
 
 
 

©    AET 2016 and contributors 
 

SPATIAL NETWORK ANALYSIS AS A LOW COST LAND USE-TRANSPORT 
MODEL OF CITY WIDE CYCLIST FLOWS 

 

Dr Crispin Cooper 
Sustainable Places Research Institute, Cardiff University 

1. INTRODUCTION 
Despite numerous studies of cycling mode choice (Wardman, Tight, and Page 2007; 
Parkin, Wardman, and Page 2007; Winters et al. 2013; Ewing et al. 2014) and route 
choice (Broach, Dill, and Gliebe 2012; Ehrgott et al. 2012) none so far have been 
turned into a general purpose tool for modelling cycling in the same way as the four 
step model (Ortúzar and Willumsen 2011) is used to model motor transport.  Such a 
model would have applications in estimating change to mode choice from proposed 
cycle infrastructure - the key economic justification for investment – as well as 
highlighting hotspots where new infrastructure would be useful in the first place, 
assisting with option selection, and illustrating how proposed infrastructure fits in to 
the wider network. This paper presents such a model which is currently being used 
to inform production of a city-wide Integrated Network Map (essentially a forward 
plan for cycle infrastructure) mandated by the Wales Active Travel Act (2013). 

The lack of prior models of this type is understandable in light of the fact that motor 
transport models typically work at transport analysis zone (TAZ) level and thus miss 
small features that can influence cyclist decision making; indeed a huge proportion of 
cycling trips are intra- rather than inter-zonal.  The answer is not simply to make 
smaller models, however; instead, equally wide scale models are needed but with a 
large increase in resolution.  Also, an increase in resolution of the vehicle model is 
needed to inform the cycling model.  This would entail a greater cost in calibration of 
the four step model, which is typically too expensive to apply to small scale cycling 
infrastructure projects in any case. 

In the absence of four step models, predictions of cycling have relied on applying an 
exogenous growth factor to current behaviour (Schwartz et al. 1999), or linking 
investment in infrastructure to growth in cycling at a course spatial scale (Parkin, 
Wardman, and Page 2007).  The can predict mode choice based on a wide range of 
infrastructure investment and sociodemographic factors, but the model is not 
sensitive to the precise location of infrastructure, thus cannot be used to determine 
the optimum location for it.   

This paper presents a high resolution, wide scale model of cyclist behaviour based 
on spatial network analysis. The fundamental premise of the model is that 
accessibility itself shapes land use, ultimately creating origins and destinations which 
cause flows (Chiaradia, Cooper, and Wedderburn 2014).  

Spatial Network Analysis (SpNA) has been applied to vehicle, pedestrian (Hillier and 
Iida 2005; Turner 2007; Cooper 2015) and cycling problems before (Raford, 
Chiaradia, and Gil 2007; Manum and Nordstrom 2013; Law, Sakr, and Martinez 
2014) but without the microeconomic behavioural foundations used here: use of a 
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cycling-specific distance metric both for defining network radius and route choice. 
Also novel in the current study is the multivariate approach, which can be interpreted 
as multiple agent models combined through machine learning to fit measured cyclist 
count data on the network. The multivariate approach is calibrated to match varying 
individual preferences of cyclists. The latter is acknowledged as a key issue in 
uptake of cycling as some cyclists are more confident in motor vehicle traffic than 
others. The model is implemented using the publicly available Spatial Design 
Network Analysis (sDNA+) software (Cooper, Chiaradia, and Webster 2011) which 
functions as either a QGIS or ArcGIS plug-in.   

2 METHODOLOGY 
2.1 Definition of distance 
The first step to producing a behaviourally accurate cyclist model using spatial 
network analysis is to determine an appropriate definition of distance through the 
network.  The metric used is based on a subset of factors identified in the cyclist 
route choice study of Broach et al (2012), the choice of which is informed by 
availability of the relevant data.  Creating a model sensitive to motor vehicle traffic is 
considered essential, however, so a submodel is used to predict motor vehicle flows.  
The definition of distance applicable to cyclists is then determined by a combination 
of distance, straightness, slope and motor vehicle traffic: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑐𝑐𝑑𝑑 = 𝐸𝐸𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑐𝑐𝑑𝑑 × 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑐𝑐𝑠𝑠  × 𝑐𝑐𝑡𝑡𝑑𝑑𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠𝑑𝑑𝑐𝑐𝑡𝑡 + 𝑑𝑑𝑑𝑑𝑎𝑎𝐸𝐸𝑐𝑐𝑑𝑑𝑡𝑡 𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑐𝑐𝑑𝑑 ×  67.2
90

 × 𝑑𝑑 (1) 

𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑐𝑐 =  

1.000 𝑐𝑐𝑠𝑠 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑑𝑑 < 2%
1.371 𝑐𝑐𝑠𝑠 2% < 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑑𝑑 < 4%
2.203 𝑐𝑐𝑠𝑠 4% < 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑑𝑑 < 6%
4.239 𝑐𝑐𝑠𝑠 𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠𝑑𝑑 > 6%

 (2) 

 

𝑐𝑐𝑡𝑡𝑑𝑑𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑠𝑠𝑑𝑑𝑐𝑐 = 0.84 𝑑𝑑
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
1000  (3) 

in which AADT is annual average daily (vehicle) traffic.  The structure of this formula 
and its constants are chosen to match Broach et al, leaving room for calibration by 
changing s, t and a; with the exponential form of Equation 3 derived by fitting a curve 
to Broach’s fixed distance bands in order to achieve better control over calibration. 
To match the original study we would set 
𝑑𝑑 = 1
𝑐𝑐 = 1
𝑐𝑐 = 0.05

 (4) 

Based on previous work we found the following parameter values best fit the Cardiff 
data in a homogenous model: 
𝑑𝑑 = 0.2
𝑐𝑐 = 2
𝑐𝑐 = 0.04

 (5) 

All cyclist distances are measured as round trip distances using the same route for 
the outward and return journey, as a cyclist who goes downhill knows they must later 
climb back up again, and this will affect their decision to cycle. 
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2.2 Definition of Betweenness 
Having defined distance appropriately, we apply it to the SpNA concept of Link 
Weighted Betweenness.  Betweenness simulates shortest-path trips from 
everywhere to everywhere, constrained by a certain maximum distance, but we 
introduce a minimum distance also, so as to simulate each distance band separately 
and thus reduce multicollinearity in the multivariate models of flow. Distances are 
defined not in Euclidean terms but in terms of Equation 1. 

From a transport simulation perspective, the noteworthy point is that there is no 
dependence on origins and destinations, or explicit inclusion of land use. Implicit in 
the SpNA model is an assumption of efficient network use: that the quantity of origins 
and destinations correlates highly with the quantity of network built to serve them.  
This assumption has previously been tested in London with very high correlation 
observed (Chiaradia et al. 2012).   

2.3 Distance decay model for flows and mode choice  
Having defined distance and betweenness, we compute betweenness within a 
number of cycling distance bands.  The distance bands chosen for cyclists are round 
trip distances of 3, 5, 8, 11, 15 and 20 ‘adjusted’ km (as per Equation 1).  Multi-band 
Betweenness is then combined using multivariate regression to fit link flow data, 
such that 

𝑠𝑠𝑐𝑐𝑠𝑠𝑓𝑓 𝑠𝑠𝑑𝑑 𝑐𝑐𝑐𝑐𝑑𝑑𝑙𝑙 = 𝛽𝛽1𝐵𝐵𝑐𝑐1 + 𝛽𝛽2𝐵𝐵𝑐𝑐2 + ⋯ (6) 

where 𝐵𝐵𝑐𝑐1,𝐵𝐵𝑐𝑐2 is the betweenness in distance bands 1, 2, etc; and the 𝛽𝛽𝑐𝑐 are 
regression coefficients. This is nonparametrically fitting a distance decay curve.  

The cycling mode choice model is also based on distance decay.  However, instead 
of computing betweenness, the variables used to predict mode choice are simple 
counts of network quantity (measured in number of links) within each distance band.  
Together, these form a multi-dimensional definition of accessibility. 

The submodel used to compute vehicle flows to inform the cyclist model is an 
angular betweenness calculation similar to those used in Cooper (2015) but with a 
higher (calibrated) maximum trip distance. 

2.4 Further models for cyclist flow 
The interpretation thus far presented is that the distance decay model uses 
regression to perform nonparametric calibration of distance decay and economic 
scaling curves.  However, it can also be interpreted as modelling different types of 
behaviour: trips of varying lengths from everywhere to everywhere. We now include 
(i) trips of varying lengths to the city centre and known cyclist recreational facilities, 
(ii) trips made by agents with varying aversion to motor vehicle traffic. The regression 
model thus chooses an appropriate ‘balance’ of behaviours that best explains the 
observed flows.  Referring to Equation 1, we compute betweenness with t=0.06 and 
t=0.08 as well as t=0.04.  

2.5 Data sources 
Road network data is based on OpenStreetMap (2015), which at time of writing 
contains more information on traffic free cycle routes than any other publicly 
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available routable network data (including commercial offerings, Lovelace 2015).  
The network data is prepared according to the instructions in the sDNA user manual, 
including planarization and use of a high cluster tolerance to correct errors (Cooper 
2016). 

Flow models are calibrated to measurements of cycle flows for 107 locations on 
roads (Department for Transport 2014) and 14 locations on traffic free paths 
(provided by Cardiff Council).  Traffic free path counts are derived from electronic 
counters covering a three month period plus a year-round counter which is used to 
deduce a scaling factor to estimate average annual daily count.  This differs from the 
on-road counting methodology (Department for Transport 2011) which is likely to 
under-count cyclists. In the final model therefore, a dummy variable is introduced to 
account for data source, to estimate the effect of differing count methodology 
between the data sets. 

Mode choice models are calibrated to journey-to-work data (proportion of working 
population travelling by bicycle) for 1077 census Output Areas covering Cardiff 
(Office for National Statistics 2011). 

2.6 Model fitting 
All models are fitted using ridge regression (Tikhonov 1943; Amemiya 1985) and fit 
reported using generalized cross-validation.  Regression is weighted to reflect the 
same balance of reducing absolute vs relative error as the commonly used GEH 
statistic. The open source sDNA Learn tool is used to perform the regression based 
on the glmnet package in R (Friedman, Hastie, and Tibshirani 2009). 

3 RESULTS 
The vehicle traffic sub-model showed optimum fit to the data with r2 = 0.81 for a 
28km (one-way) trip distance. 

Table 1 Cross-validated fit for cyclist flow models 
Flow Model GEH-Weighted r2, 

cross-validated  
Multiple radius, medium traffic aversion only (t=0.04) 0.65 
Multiple radius, trips to centre and recreation, medium traffic 
aversion only (t=0.04) 

0.73 

As above with mixed traffic aversion (t=0.04, 0.06, 0.08) 0.75 
As above with dummy variable accounting for data source 0.78 
 

Table 1 shows results for the cycling flow models.  The best model has GEH<5 for 
93% of data points, with mean GEH of 1.9. GEH is computed for the peak hour 
based on estimation that the peak carries 10% of daily flow.  

For mode choice, the multivariate distance decay model has cross-validated r2 with 
census travel to work data of 0.45.  Note that numerous sociodemographic and 
promotional factors are known to affect mode choice (Parkin, Wardman, and Page 
2007) so we should not expect to explain much more of the variance from network 
design alone. 
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An example of predicted cyclist flow is shown in Figure 1. The ability of the model to 
provide detailed spatial information on the links between infrastructure and cycling 
potential is illustrated in Figure 2, which shows potential increase in mode choice in 
the hypothetical situation that all routes were traffic-free. This is intended not as a 
realistic scenario, but an accessibility model which highlights trip endpoints and 
routes currently worst affected by motor vehicle traffic.  

 
Figure 1 Predicted cyclist flows 

 
Figure 2 Potential for improvement by introducing traffic free routes 
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4 CONCLUSIONS 
This paper has presented a range of options for modelling cycling which a modeller 
can choose from depending on their own problem constraints and available time. 
There are likewise a multitude of ways in which model outputs can be presented, 
including accessibility/scenario maps, to inform spatially sensitive models of cycling 
potential.  

The main contribution is a spatially-detailed methodology for obtaining a cross-
validated fit to existing cycle flow data on a city-wide scale. This is a step forward 
both for SpNA methodologies which do not normally use cross-validation, and 
transport methodologies which are not spatially detailed. 

While spatial network analysis may be unfamiliar to those with a transport modelling 
background, the practical modelling process is relatively simple and inexpensive in 
terms of data collection. The sDNA Integral software is run a number of times to 
compute different agent behaviours, which are then calibrated against real data with 
sDNA Learn and extrapolated with sDNA Predict. The software can also interface 
with existing models through export of skim matrices to model accessibility at high 
resolution, and import of OD matrices to use in the assignment phase (Cooper 
2016). 

Finally, we have shown that (at least in the UK) existing targets for the GEH statistic 
are too easily achieved with the small flow numbers present in cycling models. While 
we used the scale-free r2 statistic to evaluate overall model performance, the best 
choice of metric to describe fit of individual data points remains an open question.  
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