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ABSTRACT 
 

Public transport Origin-Destination (OD) matrices are a key component of transport demand 
analysis and forecast, and are typically derived from manually collected survey data. Data of this 
form is often difficult and expensive to collect as it requires the manual counting and interviewing 
of passengers at multiple sites throughout a city, and the data is normally only collected on a single 
weekday during months where no events or school holidays take place. Furthermore, these surveys 
only collect a sample of travel patterns and are potentially subject to misrepresentation as a result. 
At the same time, the use of smartcards as a method of payment for public transport is becoming 
commonplace throughout many European and global cities, with patronage of these systems 
replacing other means of payment. Automated data collection, where boarding events are 
recorded for individual smartcards, allow analysts to derive large scale and longitudinal travel 
patterns which can be used to replace traditional and expensive surveys. However, smartcard data 
alone can often only provide partial information with trips recorded at the fare stage and when a 
passenger boards. 

In this paper, and building on the work of others (Munizaga and Palma, 2012), we demonstrate how 
GPS data can be used to determine buses’ locations in relation to their stops, and how this can be 
matched with smartcard data to provide boarding locations for most records. Using data from the 
city of Tbilisi in Georgia, where all publicly run buses are fitted with GPS devices, and smartcards 
are used for ~80% of bus and metro trips, we analyse individuals‘ trip chains to infer where they 
alighted using a similar approach to Gordon (2012). We demonstrate how this method can be 
applied to large datasets, encompassing the whole city across several days. This information is then 
used to build an OD matrix for bus and metro travel in the city which can be used as an input into a 
transport model, or used by planners to understand public transport usage in more depth than 
would be possible via survey data. 
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1. INTRODUCTION 
 

Face-to-face interviews and manual, or video-based, passenger counts have traditionally been used 
to assess public transport level of service and understand where people are travelling from and to. 
These assessments help feed service provision and can be used to develop public transport Origin-
Destination (OD) matrices, which form the building blocks of a transport model. A survey approach, 
typically where passengers are interviewed while waiting for a service, allows true origins and 
destinations to be asked for, and supplementary information such as journey purpose can also be 
ascertained. However, as a means of determining level of service across a whole city, it can be costly 
and time-consuming. Because of this, the data is normally based on a small sample and extrapolated 
to represent movements and demand across a whole year.  

In recent years, smartcard ticket systems have been introduced by transport authorities across 
many European cities to standardise payment and speed up passenger boarding. In addition, these 
systems collect vast amounts of data, allowing analysts to derive large scale and longitudinal travel 
patterns which can be used to replace traditional and expensive surveys. The advantage of using this 
data source is that it is 1) cheaper (the data is already being collected), and 2) it is available over 
months and years, meaning the output results are less prone to sampling error, or results can be 
analysed during particular dates or events such as on public holidays. In some cases, smartcard data 
is recorded both at point of entry into the system, and at point of exit. If the locations of these 
transactions are known, as in the case of Jang’s (2010) analysis of smartcard data in Seoul, South 
Korea, then it is relatively straightforward to develop matrices from this boarding and alighting 
information. 

In many cases however, only partial information is recorded, with trips sometimes only recorded at 
the fare stage and only when a passenger boards (their entry point). Locations defined by fare stage 
are often complex to infer, since the stages tend to vary by route and bus company, and where they 
are known, their spatial granularity can be poor (i.e. there may only be 4 or 5 fare stages for a route, 
meaning a stage can represent distances well over 1km). To overcome this lack of information, it is 
often necessary to combine the ticket data with GPS traces from buses to determine where the bus 
was at a particular time. Due to the spatial accuracy of GPS (often between 5 – 10 metres), 
processes are usually required to match traces to a particular route. Cortes et al., 2011 employed 
spatial path rectification techniques to help assign GPS points along a road, where the specific route 
of the bus was not known. Their method assigned each GPS point to the nearest road, and then, 
using the full set of points from one device, calculated the most likely route based on the path taken 
by the majority of points. A similar method was also developed by Vanajakshi et al., 2009 who used 
intermittent GPS data to infer a bus’s speed at various points throughout a day by matching the 
traces to the route and calculating the averaged time and distance difference between them. 
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For cities which employ an entry-only smartcard validation system, it is also necessary to try and 
infer the alighting location such that bus capacity profiles and full OD matrices can be developed. 
Initially Wang (2010), and latterly Gordon (2012) used Underground (train) and bus smartcard ticket 
data from London, UK which contained boarding and alighting information for all Underground trips, 
but only boarding information for bus trips. They developed a data analysis approach to help tackle 
this problem by filtering through the data and looking at individuals’ smartcard records separately 
and in sequential order. Their process analysed data from a series of routes and aimed to find an 
alighting location based on a closest-stop rule, which assumes that a passenger alighted from their 
journey at the closest point to where they boarded their next journey. Testing this approach on a set 
of routes with good data, Wang (2010) presented destination inference successes between 57 – 66% 
(where a success is defined as the subsequent boarding stop being within 1km of a feasible alighting 
stop on the previous route). Advancing these techniques, Gordon (2012) reports a destination 
inference of 74% by introducing a daily symmetry rule, which assumes that the last trip of a day 
ends near the origin of the first trip of the day. 

Trip-chaining and alighting inference techniques are also developed by Devillaine et al., 2012 and by 
Munizaga et al., 2014 who validate their method against exogenous survey data. Their approach 
assumes the closest-stop rule and centres on data that is directly comparable to their survey data.  

 

2. CONTEXT 
 

The data studied in this paper is collected by TTC (Tbilisi Transport Company) which runs all public 
buses and the metro system in the city of Tbilisi, Georgia. This system serves a population of over 1 
million people, running buses on over 180 routes and an underground rail service with 2 lines and 23 
stations (one running North to South, and the other East to West connecting at a central station). A 
network map and route planner, showing stop information for a particular route is shown in Figure 
1. Since 2006, the city has employed a smartcard system, called ‘Metromani’ which requires 
passengers to validate the start of their journey upon boarding a bus, and entering the metro 
system. According to revenue data, TTC report that 80% of journeys are carried out using smartcards 
(with the rest being cash fare).  
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Figure 1 - Tbilisi Transport Company route planner (TTC, 2012) 

For this study, TTC provided us with three key datasets: smartcard ticket data for bus and metro, 
GPS data which tracks the location of the city’s buses, and complementary data including bus line 
and stop information in a GIS format and an ordered list of all stops for each route. 

2.1 Smartcard data 
For metro journeys, the smartcard system records the start time/date of an event and the boarding 
metro station. The resulting metro line used is not known, although in Tbilisi there are only 2 lines 
and 1 interchange station, and the alighting station is also unknown as validation is not required 
upon exit. Bus smartcard data also collects time/data information, but the boarding location is not 
specified, with only the bus number and the route number given. We were provided with 8 days of 
ticket data from 23rd May – 1st June 2016. Data for 28th and 29th was not provided as the brief was 
only to investigate weekday travel. Smartcard ticket data is collected at the weekends however, so 
in principle could be studied alongside weekday data. The 8-day dataset contains trip information 
for ~5.6 million (5,592,751) boarding events from ~600,000 (597,771) distinct devices. An example 
of the smartcard data, with the key fields shown is given in Table 1. 
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Table 1 - Unsorted bus smartcard data 

Date Time Device ID Route 
number 

Bus 
number 

Fare Balance 
on card 

22/05/2016 00:01 
 

1228356197 
 

73 3086 0.5 
 

4.7 

22/05/2016 05:39 
 

3811283834 
 

140 2129 0  

22/05/2016 05:39 
 

1835855498 
 

88 2129 0  

22/05/2016 05:42 
 

1004001755 
 

9 1146 0.5 10.45 

22/05/2016 05:46 
 

1205627171 
 

34 1145 0  

 

2.2 GPS data 
For each of TTC’s buses a GPS unit records the time and location when the bus is in service. We were 
also provided with a list of all of the bus IDs and the route they were serving on a given day. Data was 
provided from every public bus route throughout the city. The GPS data was recorded every 20 
seconds and was accurate to ±10m.  

2.3 Supplementary data 
Further to the ticket and GPS data, we were also provided with a GIS layer containing all of the bus 
and metro routes, all of the stops, and a stop list for each route detailing which bus stops each 
service calls at and in what order.  
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3. METHOD 
 

In this section, we detail the methodologies developed to determine where a smartcard record took 
place and, in turn, to which zone of the matrix a boarding or alighting event should be allocated. 
Since the bus smartcard data in Tbilisi is not supplemented with a stop location as part of the 
boarding record, it was necessary for us to infer the location of each event based on the GPS traces 
of the bus at the corresponding time. An example of GPS data for one route, plotted in GIS, is shown 
in Figure 2. 

 

Figure 2 - GPS traces for 1 bus route on 1 day, between stops 

To determine when a bus was at a particular stop, we employed a method similar to Cortez et al., 
2011, who matched GPS traces to bus routes. For every GPS record we knew the bus’s ID number 
and the route it was serving. Using GIS, we plotted these GPS points alongside the route layer and its 
associated bus stops. Around each stop we determined that the bus was potentially at the stop if 
there were one or more GPS traces within 50 metres. In addition, we needed to know the direction 
the bus was travelling so that we could assign it to the stop on the correct side of the road, and 
ignore nearby stops on the other side of the road (the GPS measurements alone were not accurate 
enough for us to determine this based purely on location). Since we knew the expected sequence of 
bus stops along each route, we developed an algorithm to determine the direction the bus was 
travelling based on the order of the stops it passed. For instance, in the timestamped sequence of 
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GPS traces, a point recorded at time t is near bus stop 4 (on the outbound route) and bus stop 42 
(on the inbound route). Later in the sequence, a GPS point at time t + 2 minutes is located near bus 
stop 5 and bus stop 41. Since the sequence of stops is increasing in the outbound direction and 
decreasing in the inbound direction, we determine that the observed points were travelling in the 
outbound direction (from stop 4 to stop 5). This process is highlighted in Figure 3, where the GPS 
traces are plotted for one route alongside that route’s associated stops in their sequential order. 

 

Figure 3 - GPS traces assigned to nearby bus stops 

Using this approach, we determined the number of times each bus traversed its route during a day, 
and to which stop the nearby GPS traces should be assigned. For each leg of a bus’s route we 
assigned the time it arrived at every stop using the first GPS point seen near that stop. Further, the 
last GPS point seen near the stop was determined to be the time it left the stop. The difference 
between these two timestamps was calculated as the bus’s dwell time (within the constraint of the 
50-metre buffer). The daily sequence of a bus’s operation on a route, with its arrival and departure 
time at each stop, was output in a series of tables. An example of this output is shown in Table 2. 

GPS point near stop 4 
and stop 42 at time t 

GPS point near stop 5 
and stop 41 at time t+2 

GPS points within 50m 
of a bus stop 

GPS points along a route, 
but not near a stop 
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Table 2 - Bus operation table for route 14 

Date Vehicle 
ID 

Vehicle 
Leg ID 

Route 
# 

Dir-
ection 

Stop 
Sequence 

Current 
Stop # 

Next 
Stop # 

Distance 
along 
route 
(m) 

Arrival 
Time 

Dep-
arture 
Time 

Next 
Arrival 
Time 

Average 
Speed 
km/h 

25/05/2016 412 1 14 1 1 1188 1190 0 08:41:04 08:49:48 08:50:47 21.26 

25/05/2016 412 1 14 1 2 1190 3316 348.5 08:50:47 08:51:58 08:52:29 34.11 

25/05/2016 412 1 14 1 3 3316 1191 642.1 08:52:29 08:52:29 08:53:11 32.70 

25/05/2016 412 1 14 1 4 1191 3314 1026.7 08:53:11 08:53:11 08:54:14 26.46 

25/05/2016 412 1 14 1 5 3314 1192 1490.3 08:54:14 08:54:14 08:55:17 12.42 

25/05/2016 412 1 14 1 6 1192 1193 1704.9 08:55:17 08:55:17 08:56:21 39.16 

25/05/2016 412 1 14 1 7 1193 1194 2409.8 08:56:21 08:56:21 08:57:02 39.18 

25/05/2016 412 1 14 1 8 1194 2506 2851.8 08:57:02 08:57:21 08:58:47 33.52 

25/05/2016 412 1 14 1 9 2506 1196 3656.2 08:58:47 08:58:47 08:59:50 29.92 

25/05/2016 412 1 14 1 10 1196 1197 4173.1 08:59:50 08:59:50 09:01:15 28.61 

25/05/2016 412 1 14 1 11 1197 1198 4852.9 09:01:15 09:01:15 09:01:57 18.55 

25/05/2016 412 1 14 1 12 1198 1199 5066.6 09:01:57 09:01:57 09:03:21 15.92 

25/05/2016 412 1 14 1 13 1199 2497 5441.0 09:03:21 09:03:21 09:04:03 28.93 

25/05/2016 412 1 14 1 14 2497 1200 5774.2 09:04:03 09:04:03 09:04:45 40.21 

25/05/2016 412 1 14 1 15 1200 3697 6247.1 09:04:45 09:05:06 09:06:50 28.94 

 

3.1. Assigning a bus stop to a smartcard boarding record 
Using our calculated tables of bus routes and timestamped locations of the bus at stops, we 
attempted to assign each smartcard boarding location to a bus stop on that route using a matching 
process. This match was based on the bus route, the bus vehicle number, and the timestamp. For 
instance, in a bus route sequence, if the bus is recorded arriving at stop A at 17:20:10 and arriving 
later at Stop B at 17:24:50, all matching smartcard records between these times are assigned to stop 
A. This assumes that a smartcard validation record can take place at any time after the bus arrives at 
stop A but before it arrives at the next stop B. This technique is highlighted diagrammatically in 
Figure 4. In Tbilisi, tickets must be validated using one of the self-validation ticket machines upon 
boarding the bus, thus it is assumed that most smartcard transactions are recorded before the bus 
reaches the next stop.  
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Figure 4 - Assigning smartcard boarding events to a bus stop 

Based on the methods described above, smartcard boarding events were assigned to a bus stop 
based on a matched timestamp, bus number, and the bus’s route. In total, more than 97% of the 
smartcard records were successfully matched to a boarding location. Upon closer inspection of the 
~3% of unmatched records, most these took place when buses were in the depot (presumably by 
TTC employees) and often in large batches in a short timeframe. With these records dismissed a 
99% match rate was achieved, the remaining unmatched records a result of a presumed error in the 
bus ID  bus route lookup table (i.e. a bus was logged as running on route 24, but was actually 
operating on another route). 

 

3.2 Inferring Alighting stops from smartcard boarding records 
In addition to the bus smartcard data, which requires the assignment of boarding location, TTC also 
collect and maintain smartcard data for the city’s metro. This dataset names the metro station 
where a boarding event took place, and hence this location is already known. Because both bus and 
metro are operated under a unifying smartcard system, the same device ID can be observed in both 
datasets. Thus, when combined and sorted sequentially, each device’s trips can be identified by 
time and mode. An example of this combined data is shown in Table 3. 

  

GPS point: 17:20:10 GPS point: 17:24:50 

Stop B Stop 
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Table 3 - Combined smartcard data with inferred boarding locations 

Date Time Device ID Route 
number 

Boarding 
location 
(Stop ID) 

Direction Stop 
sequence 
number 

23/05/2016 06:01 
 

762411082 
 

73 3086 I 
 

4 

23/05/2016 06:39 
 

762411082 
 

M 144 Unknown - 

24/05/2016 05:39 
 

762411082 
 

73 3086 I 4 

24/05/2016 06:12 
 

762411082 
 

9 1146 I 7 

24/05/2016 18:46 
 

762411082 
 

34 1145 O 36 

24/05/2016 20:00 
 

762411082 
 

M 258 Unknown - 

 

So that full OD matrices can be generated, it is necessary to infer an alighting record for each 
boarding event. Similar to Gordon (2012), we have developed an algorithmic approach to assign a 
trip’s alighting location based on the location of the next observed boarding using the closest-stop 
rule. This is achieved by searching for all the bus or metro stops within 1km of the next boarding 
event. From these nearby stops, it is assumed that the passenger alighted at a stop on the previous 
trip’s route. If more than one stop is nearby, the closest to the subsequent boarding is chosen. This 
process is shown in Figure 5 where a series of boarding events are known for smartcard x. For an 
event recorded at time t, and assumed to be boarding at stop 5 on route A, we know that the 
passenger alights at a later stop along route A. In passenger x’s smartcard transaction history, a 
subsequent trip is recorded at stop 18 on route B. Since stops 8 and 9 are near (within 1km) of stop 
18, it is assumed that passenger x alighted at the nearest of these stops; in this case stop 9. 
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Figure 5 - Process to infer an alighting location 

This process is scripted algorithmically and run through all of the trips for each smartcard device. 
For every boarding event, an alighting record is created and designated as either an alight, a 
transfer, or location unknown. The alighting is deemed to be unknown if the boarding event is not 
proceeded by another on the same or next day, or if no matching stops are returned in the 
algorithm process (i.e. their next trip did not start near where their last trip could have ended). In 
these cases, it is assumed that the passenger travelled intermediately via some other, non-public 
transport, mode. Transfers are assumed to have occurred if a boarding is recorded less than 30 
minutes after the previous boarding. In addition, records which occur within 30 seconds of the next 
one are discarded since multiple duplicated records were observed in bunches within the dataset 
(assumed to be a recording error from the ticket validation machine). This is also based on the fact 
that Metromani cards are not transferrable, and so cannot legitimately be scanned for an 
accompanying passenger. For all other records that produce a stop match, it is assumed that the 
passenger has completed their journey and alighted at their destination. This procedure is shown 
schematically in Figure 6.  

Route A 

Route B 

Boarding event for 
smartcard x at time t 

Boarding event for 
smartcard x at time 
t+1 

Possible locations 
for trip alighting 

Stop #5 Stop #6 Stop #7 Stop #8 Stop #9 

Stop #17 

Stop #18 
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Figure 6 - Schematic of algorithm to run through all smartcard data and assign alighting locations 

 

4. RESULTS 
 

GPS data was provided for each of the city’s buses over an 8-day period, totalling over 11 million 
individual GPS traces. Coupled with GIS layers of the bus routes and their associated stops, each 
bus’s service could be plotted, analysed, and matched to corresponding stops along its route to 
determine when it arrived and departed from each one. Smartcard data, available over the same 8 
days, contained ~5.6 million boarding events from ~600,000 passengers. Based on the assumption 
that smartcards are validated at any point after a passenger boards at one stop, but before the bus 
arrives at the next, 97% of transactions were assigned a boarding location (99% once transactions 
at bus depots were removed). Each boarding event was assigned an associated alighting 
designation, either the destination of a trip, a transfer, or an unknown location if a match could not 
be achieved. From the 5.6 million smartcard records, ~4.6 million records were assigned a distinct 
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boarding location (the majority of those records discarded due to multiple transaction records 
within a short time frame). Of the 4.6 million boarding locations, 13% (~520,000) were not 
proceeded by another trip on the same, or next, day. For the remaining trips, using the method 
described in section 3 which inferred a passenger’s alighting location based on their next boarding 
location, ~2.9 million records were assigned an alighting location that would have been feasible 
assuming a walk of <1km. Approximately 800,000, or 27%, of the alighting records are defined as 
transfers, since a subsequent record was noted within half an hour of the previous boarding. These 
results are summarised in Table 4, which presents data from all 8 days (23rd May – 27th May and 
30th May – 1st June inclusive), and also with counts from the 27th May and 1st June removed. In 
these cases, since a subsequent day of data was not available, the last boarding record of the day 
would not have been assigned an alighting location because no later trips were known for that 
passenger. Ignoring these days improves the alighting match success from 71% to 73%. 

Table 4 - Boarding and alighting inference results 

 All days 6 days (excluding days 
without subsequent day) 

Total smartcard transactions 5,592,751 4,128,748 
Discarded ‘duplicate’ boarding records 17.1% 16.8% 
Single record day and subsequent day 9.3% 9.4% 
Distinct boarding records 73.6% 73.8% 
Total 100% 100% 
From distinct boarding records:   
Unmatched alighting locations 29.4% 27.3% 
Alighting location found 70.6% 72.7% 
Of which defined as a transfer  27.1% 26.3% 

 

Using records where a boarding and alighting location has been successfully inferred, it is possible 
to assign the trips to an OD matrix. Since smartcard data and our methodology only deals with 
public transport patronage, strictly it is only possible to generate an access-egress matrix showing 
where passengers entered and departed the public transport network. Without further information 
on subsequent modes (such as walking), the assumption is that a boarding bus stop represents a 
passenger’s origin, and the alighting location represents their destination. Further to this, every bus 
stop location was assigned to a zone; the zoning system having been developed as part of 
additional modelling work for Tbilisi City Council. This zoning system was created to allow for 
integration with a 2014 household travel survey and 2011 Census data. In total, there are 345 zones 
across the city, with the smallest zones concentrated in the corridor which follow the city’s main 
river, and the metro line which extends to the western university district. Using this zoning system, 
each of the matched boarding and alighting sequences are assigned to the zonal matrix. Because 
the smartcard records are timestamped, the matrix can be filtered to only show trips at certain 
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times of day, as in Figure 7 which shows sum of all alighting trips per zone in the AM peak (07:30 – 
09:30). Although not represented in this figure, it would also be possible to factor the matrix to 
account for missing trips and cash-fare passengers (if it is assumed that the distribution of these 
trips is the same). 

 
Figure 7 - Inferred alighting of passengers per zone between 8AM - 9AM 

5. DISCUSSION AND CONCLUSION 
 

In this paper, we describe a series of processes to develop an OD matrix for public transport use in 
the city of Tbilisi, Georgia. The data analysed is generated via a smartcard system that is used for 
80% of public bus and metro journeys in the city. Unlike some datasets of this kind, which are 
stamped with a boarding stop or fare stage, the bus smartcard data in Tbilisi is only provided with a 
route number, bus ID, and timestamp. Therefore, using GPS data recorded from every bus, a 
method was developed to determine when buses arrived at each stop along their route. Although 
not explored in this paper, the bus route tables produced in this process could be used to 
understand detailed level of service indicators such as bus operating speeds throughout the day, 



                                                                              
 
 

© AET 2017 and contributors 

 Page 15 
 

dwell times, and route operating frequency. Combined with smartcard transactions, assigned to 
each bus, it would also be possible to infer capacity profiles based on the developed boarding and 
alighting information. This could provide the public transport authority with in-depth information 
about which of their services could benefit from improvement, whether that be frequency variation 
or routeing adjustment.  

The alighting inference process employed in this paper assumes a closest-stop rule, that is, where a 
passenger gets off their bus or metro at the point closest to where they next board a service. Whilst 
this assumption is likely to be true in a lot of cases, clearly if any intermediate mode (including 
walking) is used, the inferred alighting stop may not be found, or will be mis-assigned to an 
incorrect stop. In Tbilisi, although TTC operate all public transport routes, semi-regulated 
marshruktas (mini-buses) are also in operation and serve many of the same routes as TTC, albeit 
not to defined timetables. Thus, an inbound journey could be taken in the morning using a 
smartcard , and the outbound journey later in the day via a marshrukta for a cheaper price. 
Validation surveys could potentially be used to understand how many public transport trips are 
proceeded by another mode, but even this is likely to underestimate the number of ‘unplanned’ 
trips where someone uses a marshrukta because it arrives at the stop before a scheduled bus. 
Similar to Munizaga and Palma, 2012 but in contrast to Gordon (2012), we apply the closest stop 
rule to trips starting on subsequent days as opposed to employing a daily symmetry rule. Validation 
surveys in this case would also be useful to determine which approach is more accurate, or whether 
a combination of correlated results could be used. 

Our approach was developed and scripted in Python to facilitate integration with GIS processes and 
to handle data across the whole city, and to use multiple weeks’ worth of data. This has enabled us 
to process over 11 million GPS traces and 5 million smartcard transactions and could be expanded 
to handle data over a longer period, or shortly after it is collected, providing the bus company with 
consistently up-to-date information. In addition, since these methods make use of already 
collected, passive data, the developed matrix can be produced at a much lower cost than 
traditional passenger surveys and interviews. While providing large cost savings, this can also mean 
that the use of interview techniques becomes more targeted and is used more for validation rather 
than as a primary means of data collection. For instance, although the 80% patronage of the 
smartcard system provides a good sample size, the travel patterns of the remaining 20% are 
unknown. Without further information, it may be sufficient to assume travel patterns are the same, 
but this is unlikely to be the case with cash payers probably less frequent bus users (i.e. not 
commuters) or transient passengers visiting from another location. In this case, it may be 
worthwhile conducting surveys that specifically target cash payers. Similarly, because our alighting 
method relies on, preferably repeated, patterns it is likely that the trip behaviour of unmatched 
records is different to those where a match was found.   
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The methods developed in this paper are applicable in any location where smartcard ticketing and 
location information is prevalent (be that via bus GPS loggers or location stamped ticket records). 
With systems being rolled out, or already well-established, in many European cities analyses of this 
type can provide a comprehensive understanding of public transport usage, capacity, and 
operation. For more in-depth studies involving transport modelling, the production of OD matrices 
is possible. Compared to manual survey derived matrices, these can therefore be developed at a 
lower cost, yet provide more representative assessments of a city’s public transport network, 
enabling transport authorities to make better informed improvements in their city.  
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