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1 ABSTRACT 

In this paper we present a model how passengers navigate through 
overcrowded public transit networks. The model is then integrated into a 
transit assignment procedure. Variations of this model can be used to reflect 
different levels of information. This allows estimating the benefit a portable 
journey planner might have for passengers who need to navigate through 
unreliable networks. 
In many cities public transportation systems have reached their capacity limit. 
During the peak hours vehicles are crowded and often passengers are left 
behind on the platform. In some cases subway stations need to be temporarily 
closed in order to prevent overcrowding on the platforms. Passengers are 
aware of these facts and take them into account when they choose their route 
and their departure time.  
When a public transit network reaches its capacity limit it is no longer reliable 
from the point of view of the passenger. It no longer suffices to choose a path 
through the network, since it may contain a ride on a vehicle that might be 
overcrowded. Instead, a passenger needs to have a strategy to navigate 
through such an unreliable network. He has to determine what to do, if he fails 
to board a vehicle. 
A schedule-based transit assignment model that is based on strategies was 
presented by Hamdouch and Lawphongpanich (2008). In that model a 
strategy consists of an ordered set of choices at each station. When the 
capacity of a vehicle is too small to accommodate all passengers, a 
passenger who is unable to board the first vehicle of his choice tries to board 
the second best and so forth. An optimal strategy minimizes the expected 
generalized cost of travel. The expected cost depends on the cost of the 
possible outcomes and their probability. As opposed to a single path, a 
strategy is always reliable.  
In this paper we analyze two use cases for this strategy concept. The first use 
case is a portable journey planner that guides a passenger through an 
unreliable network. The input is information about the schedule and the 
crowding situation inside vehicles and at stations. We analyze to what extent 
additional information improves the resulting strategy compared to a 
passenger who has less information or other restrictions. Passengers may be 
unaware of the capacity restrictions or have less knowledge of the schedule 
and navigate based on headways; or – due to the complexity of the network – 
they restrict their choices to certain connections that are deemed attractive. 



The results may be used as an indicator how portable journey planners that 
access online information about the crowding situation can improve the travel 
times of the passengers. 
The second use case is transit assignment. We present a transit assignment 
model that is based on strategies. It seems plausible that in unreliable 
networks passengers leave earlier than their desired departure time in order 
to account for the unreliability. We show that this effect can be reproduced in 
our model.  

2 INTRODUCTION 

The purpose of transit assignment is to determine how passengers navigate 
through a public transit network. In static models, demand is expressed as an 
OD matrix, which contains a number of passengers who want to travel from 
an origin O to a destination D. The network consists of a set of stops and 
lines, which connect the stops. Since the model is static, no departure times 
are given for the lines. The passengers rather navigate based on average line 
headways. It is assumed that vehicles arrive in random order, and that 
passengers board vehicles they deem attractive. Therefore, it is not known a 
priori, which path through the network a single passenger will take. In the 
assignment, the OD flows are split according to the arrival probabilities of the 
lines. The approach has become known as the hyperpath approach, or 
alternatively as optimal strategy approach (Nguyen & Pallottino, 1988; Spiess 
& Florian, 1989).  
Due to the static nature of these models, it is not easy to model peak hour 
effects. While there are approaches that can model the effect of congestion on 
route choice (this is done by reducing the frequencies of congested lines, the 
effective frequency approach (Cominetti & Correa, 2001)), it seems to be hard 
to model the effect on departure time choice. 
In dynamic transit assignment models, a schedule is given. Therefore, these 
models are usually called schedule-based models. The demand has a 
temporal dimension, which allows modelling peak hours and off-peak hours. 
The network and the schedule are usually represented with a time-expanded 
network. The details of the time-expanded models tend to be different, while 
the general structure tends to be the same. It is possible to develop transit 
assignment models that are based on shortest paths in the time-expanded 
network. However, usually other approaches have been preferred. The 
majority of the schedule-based assignment models are more complex. 
Friedrich and Wekeck (2004) presented a model based on a branch and 
bound search algorithm, that allows modelling costs that depend on path legs, 
not only on individual links of the path. Nuzzolo et al. (Nuzzolo, Crisalli & 
Rosati, 2011; Russo, 2004) developed a complex model that is based on a 
so-called diachronic network. The passengers’ choices are based on a 
random utility model. Furthermore, it is assumed that passengers navigate 
based on frequencies in high-frequency networks, not on the schedule. 
Recently, this model was extended, so that it is now possible to take into 
account vehicle capacity constraints, which may not be violated. Hamdouch et 
al. (2008) presented a model, where vehicles have fixed capacity constraints. 



Passengers are aware of these constraints. Instead of paths, they choose 
strategies, which take into account the possibility of failure to board a vehicle. 
This means that the passengers do not simply react, when they fail to board a 
vehicle; instead, they make a pre-trip choice that takes into account all the 
failure probabilities in the network. 
Our model is based on the model from Hamdouch et al. In that model it is 
assumed that passengers know the complete network and its schedule. 
Furthermore, it is assumed that passengers have precise knowledge of the 
failure-to-board probabilities in the whole network. We will show that it is also 
possible to model passengers, who make their choices based on average line 
headways and less precise knowledge of the failure-to-board probabilities. 
This is supposed to be a more precise method of modelling passenger 
behaviour in high-frequency networks. The full-information and the headway-
based approaches are then compared.  
If one assumes that passengers are unable to know the complete schedule 
and the reliabilities, one might argue that the full-information strategy could 
still be calculated by a portable navigation device. This device could, for 
example, have access to a server, which has information about the schedule 
and how congested the vehicles are. The headway-based approach 
represents a well-informed (but not completely informed) passenger. The 
difference in the quality of the strategies can be seen as the potential benefit 
of a portable navigation device. 

3 NETWORK MODEL 

The public transit network and timetable are represented by a time-expanded 
network � � ��, ��, where � is the set of nodes and � is the set of arcs. 
There are two types of nodes: the set of stop nodes �� 	 � and the set of in-
vehicle nodes �
 	 �. Stop nodes represent being at a stop at a certain point 
in time ����, in-vehicle nodes represent being inside a vehicle between two 
stops. There are five types of arcs. Waiting arcs connect consecutive stop 
nodes at the same stop. Dwelling arcs connect consecutive in-vehicle nodes 
of a vehicle run. Boarding arcs start at a stop node and end at an in-vehicle 
node. Alighting arcs start at an in-vehicle node and end at a stop node. An in-
vehicle node has exactly one incident boarding arc and one incident alighting 
arc. The fifth type of arc is the walking arc. As waiting arcs they connect stop 
nodes, but of different stops. They represent walking from one stop to the 
other. 
Figure 1 shows a small time-expanded network with four stops. The x-axis 
represents space, the y-axis represents time. 



 
Figure 1: A Small Time-Expanded Network 
 
The node, where an arc 
 starts, is also called the tail node ��
�; the node, 
where an arc ends, is called head node ��
�. Stop nodes have a time 
coordinate ����. For stop nodes this is the point in time which they represent.  
Nodes and arcs have intrinsic costs. For an in-vehicle node � � �
, the 
intrinsic cost ���� depends on the length of the journey that the in-vehicle 
node represents. Suppose that the corresponding boarding arc is called 
 and 
the corresponding alighting arc is called 
�. Then 

���� � ����
��� � ����
��, � � �
 . 
For stop nodes, the intrinsic cost is 0. The intrinsic cost � of an arc 
 depends 
on the type of arc and the time coordinate of the end nodes. If 
 � �� is a 
waiting arc (where �� is the set of waiting arcs), the cost is 

��
� � �� �����
�� � ����
��� , 
 � ��. 
Here, �� is a positive cost parameter that sets the cost of waiting at a stop in 
relation to the cost of staying in a vehicle. Usually it is assumed that 
passengers prefer being inside a vehicle to waiting at a stop, therefore it is 
assumed that ��  1. The intrinsic cost for walking arcs 
 � �", where �" is 
the set of walking arcs, is defined similarly: 

��
� � �# �����
�� � ����
��� , 
 � �" . 
Here, �# is the parameter that sets walking into relation with staying in a 
vehicle. The cost of boarding arcs is 0. The intrinsic cost of alighting arcs can 
be used to model the passengers’ averseness to transfers; therefore, a 
penalty $ can be used if the alighting arc does not end at the destination of 
the passenger. It is assumed that dwelling inside a vehicle as it is waiting at a 
stop has the same cost as being inside the vehicle when it is moving. 
In our model, vehicles have capacity constraints. These constraints may not 
be violated. This means that if a vehicle is full, the passengers remaining at 
the stop may not enter it; they have to wait for the next vehicle or take a 



different route to their destination. A vehicle at a certain stop therefore has a 
certain access probability, or reliability %. The reliability function % is defined on 
the set of arcs � and takes values between 0 and 1. Its value is 1 for waiting, 
walking, dwelling and alighting arcs. For boarding arcs it can be smaller than 
1. The reliability for boarding arcs is high, if there are not many passengers. 
This is usually true in the normal, off-peak times. At peak times the reliability 
of boarding arcs is low, if vehicle capacities are insufficient. 

3.1 Strategies 

When passengers navigate through the network, they know that vehicles may 
have insufficient capacity. The passengers take this into account before they 
start their journey. This means that a passenger has one or more alternatives 
for the case that he fails to board a vehicle. These alternatives are called 
options. They coincide with the outbound arcs of the node. At each node �, a 
passenger has a sorted set of options &��� � '
�, … , 
)*. When the first option 

fails, a passenger tries to use the second option, and so forth. It is assumed 
that the set of options contains at least one reliable arc. Usually at stop nodes 
this is the waiting arc. 
All passengers have an origin, a destination, and a strategy to travel from the 
origin to the destination. For this, a passenger selects a node from the set of 
nodes in his origin and navigates through the network according to the sorting 
of options at each node that he encounters. The passenger leaves the 
network at the first node he reaches that belongs to his destination. It is 
assumed that there always exist reliable ways to travel from the origin to the 
destination, so no passengers are “lost” in the network. 
The passenger selects the node at the origin (the root node �+) by its cost 
���+�. One way to define the cost of a node is the mean value cost function 
that was used in (Hamdouch et al., 2008). Here the cost �� of each option 
, is 
multiplied with its probability -, and then the costs of the options are summed 
up. The cost �� of each option is derived from the intrinsic cost � of its arc and 
the cost � of the end node of that arc: 

���
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A passenger can have a desired arrival time or a desired departure time. In 
this paper we focus on passengers with a desired departure time. A 
passenger will select a root node �+, where the sum of the node cost ���+� 
and the schedule delay penalty 56��+� are minimal. The schedule delay 
penalty 56 is expressed with the following schedule delay function: 

56��+� � γ� / max�0, ��;� � ���+�� . <# / max�0, ���+� � ��;�� 

Schedule delay functions of this type are used frequently in the literature. In 
many cases they have an additional one-time penalty term (Noland & Polak, 
2002). Here, ��;� is the desired departure time of the passenger, and <� and 
<# are non-negative parameters. 



3.2 Information 

When the mean value cost function is used, it is assumed that the passenger 
has complete information about the network. This includes knowledge of the 
schedule and knowledge about the reliability of each connection. When 
frequencies are high, though, knowledge of individual vehicle departure times 
has a lower value than in low-frequency networks – passengers then navigate 
based on average headways (Nuzzolo, Russo & Crisalli, 2003).  
In headway-based models, choices are made based on line properties, not on 
properties of individual vehicles. A passenger determines an attractive set of 
lines and boards the first vehicle of an attractive line that arrives. A commonly 
used model to determine the attractive set of lines uses the following formula 
(Chriqui & Robillard, 1975): 

min?
1 . ∑ AB�BCDB

∑ AB DB
 

Here AB is the frequency of line E, �BC  is its cost, and DB is a 0/1 variable 
determining whether line E belongs to the attractive set of lines. When the 
expression in the formula above is minimized, only the attractive lines have 
the value DB � 1. Under the assumption that headways are exponentially and 
independently distributed, it can be shown that a simple greedy method 
suffices to optimize the above expression (Spiess et al., 1989). 
In order to use this approach in the schedule-based strategy model, the 
values AB and �BC  have to be defined for each line. In the following, ways are 
proposed how this can be done. These models still have to be confirmed with 
actual data. The preliminary results that are presented in the example section 
are based on schematic network models. They seem to confirm that the ideas 
point in the right direction. 
Suppose a passenger P is standing at a stop at time �. Let E be a line, then 
�B,�, �B,#, … are the next departure times of that line. Suppose that ��B,�, ��B,#, … 

are the costs of the line departures and %B,�, %B,#, … their reliabilities. 

The first modelling decision is to define the set of lines on a stop. This is 
simple in static models. In a dynamic model, the problem is that lines may 
only run early in the morning or late at night. This means that the set of lines 
itself depends on the time-of-day. Furthermore, there may be lines with low 
frequencies, for example one vehicle per hour, even if the network has many 
high-frequency lines. It seems that if the departure time of such a vehicle is 
near, it will affect the choices of the passengers; if the vehicle has just 
departed, it is likely that the line plays no role in the passengers’ choices. A 
possible way to determine the set of lines is to take only lines into account that 
have a vehicle departure in the next 30 minutes. Therefore, a line E enters the 
set of lines passenger P perceives, if  

�B,� � � F 30 min. 
The next modelling decision is how to define the cost of a line. Again, this is 
more complex than in the static case, because there the cost is constant; it 
does not depend on the individual vehicle. In the dynamic case, though, the 
attractiveness of a line’s destination may change. For example, if it is a bus 
line that leads to a subway station of a central line, it may be attractive in off-
peak hours, but become unattractive in peak hours, because the trains are 
overcrowded. One possibility to define the cost of a line is to take the average 
cost of the next two vehicle departures of that line: 



�BC � ��B,� . ��B,#
2  

 
The next modelling decision is how to define the line headways. One way to 
do this is to take the difference between the next two departures of the line. A 
preliminary definition for the line frequency then would be 

A�B � 1
�B,# � �B,#

 

However, the passengers should also take into account that the vehicles 
could be unreliable. The reliability of the line may, again, be defined by the 
average reliability of the next two vehicle runs: 

%B � %B,� . %B,#
2  

Assuming that the headways are distributed with an exponential distribution, 
the actual line frequency can be adjusted (Trozzi, Hosseinloo, Gentile & Bell, 
2009): 

AB � 1
�B,# � �B,#

/ % 

It is important to notice that due to the changes in costs and frequencies, the 
set of attractive lines changes during the day. Therefore, it can happen that 
passengers change their opinion about the attractiveness of lines while they 
are waiting at a stop. A vehicle of a line may be perceived attractive even if a 
passenger let a vehicle of the same line pass ten minutes ago. 

4 ASSIGNMENT 

The assignment procedure is an iterative process. At first, optimal strategies 
are determined for all origins and destinations. Then the demand is loaded 
onto the network. For this, a packet-based procedure is used (see also 
Hamdouch et al., 2008; Nuzzolo et al., 2011). During the loading, a boarding 
process is performed on a stop at each point in time when a vehicle leaves. 
The boarding process provides new reliabilities of the boarding arcs. It is 
assumed that the boarding process is random in our examples. Another 
possibility is first-in-first-out boarding. The resulting reliabilities are used in the 
next iteration of the algorithm to calculate new optimal strategies. 
Figure 2 shows a flow chart of the assignment procedure. 



Figure 2: The Assignment Procedure

5 EXAMPLES 

The following examples show very simple networks. Despite their simplicity, 
the assignment results and the strategy choices are not trivial. The 
parameters of the examples were chosen in such a w
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and 7:18 is the last one
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expected to react to the insufficient capacity. 
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Figure 3: Assignment Result for Example 1 
 
The result of the assignment procedure is also shown in Figure 3. In the peak 
time there are runs, where the demand exceeds the capacity. Passengers, 
who fail to board, have to wait for the next vehicle. Still, there are more 
passengers, who depart in the peak time than can be accommodated by the 
vehicles. Coming in the peak time and risk failing to board a vehicle is still 
more attractive for most passengers than starting the journey before or after 
the peak. The difference curve in Figure 3 shows that the actual demand for 
the runs between 6:32 and 6:48 is higher than the theoretical demand, 
because there are some passengers, who start their journeys earlier to avoid 
the congestion in the peak time. For the same reason, the runs between 6:52 
and 7:28 have lower demand. The actual demand for the runs between 7:40 
and 7:52 again is higher than the theoretical demand. The additional 
passengers using these runs try to avoid the queue that has formed in the 
peak time. The size of the queue can be seen in Figure 4. Its size increases 
until 7:16, then it decreases again.  
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Figure 4: Queue in Example 1 
 
The network is overcrowded in the peak time, although there would be 
sufficient capacity if passengers were more willing to change their departure 
times. The example is not supposed to show that passengers are unwilling to 
change their departure times. It rather shows that if changing the departure 
time for one second is as unattractive as waiting for a second in a crowded 
station, departure times do not change much. 

5.2 Two Lines, Identical Headways, Same Departure Times 

Example 2 is based on Example 1. In Example 2 there exists an additional 
Line 2 that always runs 1 minute after Line 1. Line 2 is slower; it takes 15 
minutes to go from Stop 1 to Stop 2, but the vehicles have a large capacity (in 
the model it is assumed that the capacity is infinite). Passengers, who fail to 
board a fast vehicle of Line 1, have to choose between boarding the next slow 
vehicle and waiting for the next fast vehicle. Notice that at the moment when a 
slow vehicles arrives, a passenger, who decides to wait for the next fast 
vehicle has an expected remaining travel time of 13 minutes (3 minutes 
waiting plus 10 minutes travelling), if the next fast vehicle is reliable. 
Intuitively, the next fast vehicle needs to have quite a high reliability for the 
passenger to discard the slow vehicle. The information, how reliable the 
second fast vehicle is, is therefore very valuable to the passenger. 
Table 1 shows the reliabilities of the vehicles that are not reliable. They all 
belong to the fast line. 
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Departure Time Reliability 

06:36 0.9 

06:40 0.8 

06:44 0.7 

06:48 0.6 

06:52 0.5 

06:56 0.5 

07:00 0.5 

07:04 0.5 

07:08 0.5 

07:12 0.5 

07:16 0.5 

07:20 0.5 

07:24 0.5 

07:28 0.6 

07:32 0.7 

07:36 0.9 

Table 1: Reliabilities of the Unreliable Vehicles 
 
Table 2 shows the strategy costs for schedule-based and headway-based 
navigation. 
 

Departure Time TT sched.-based 
[s] 

TT hdwy-based 
[s] 

Difference 
[s] 

06:41:00 670 900 230 

06:44:00 708 708 0 

06:45:00 708 900 192 

06:48:00 744 744 0 

06:49:00 744 900 156 

06:52:00 780 780 0 

06:53:00 840 900 60 

06:56:00 780 780 0 

06:57:00 840 900 60 

07:00:00 780 780 0 

07:01:00 840 900 60 

07:04:00 780 780 0 

07:05:00 840 900 60 

07:08:00 780 780 0 

07:09:00 840 900 60 

07:12:00 780 780 0 

07:13:00 840 900 60 

07:16:00 780 780 0 

07:17:00 840 900 60 

07:20:00 780 780 0 

07:21:00 840 900 60 



07:24:00 780 780 0 

07:25:00 840 900 60 

07:28:00 728 728 0 

07:29:00 728 859 131 

07:32:00 679 679 0 

07:33:00 679 804 125 

07:36:00 624 624 0 

07:37:00 624 780 156 

07:40:00 600 600 0 

Table 2: Strategy Costs for Example 2 
 
At the departure times of the fast vehicles (the even times) schedule-based 
and headway-based navigation result in the same strategies. Up to 7:25, all 
passengers prefer boarding the slow line to waiting for the fast line. After 7:28 
all passengers prefer waiting for the fast line. At the odd times schedule-
based navigation is more successful, because passengers leave earlier than 
their desired departure time. They know that a fast vehicle is leaving just one 
minute earlier. Passengers navigating based on headways do not know this, 
and therefore their strategies have higher costs. 

5.3 Two Lines, Identical Headways, Different Departure Times 

Example 3 is similar to Example 2. The difference is that the slow line runs 
three minutes later than the fast line, not one minute. This makes the slow line 
less attractive for passengers, who navigate based on the schedule. These 
passengers know that when they skip the slow vehicle, they have to wait only 
1 minute until the next fast vehicle arrives. Furthermore, the strategy to leave 
before the desired departure time is not as attractive as in Example 2, 
because passengers would have to leave 3 minutes early. Passengers 
navigating based on headways do not know, that the next fast vehicle after a 
slow vehicle runs just one minute later. They tend to overestimate the 
headway for the fast line. Therefore, in many cases they prefer the slow line to 
waiting for the next fast vehicle. 
The reliabilities of the vehicles are the same as in Example 2. 
Passengers navigating based on the schedule always prefer to wait for fast 
vehicles in this example. They never board slow vehicles. Passengers 
navigating based on headways, however, board the slow vehicles arriving 
between 6:43 and 7:27. Table 3 shows the travel times of each passenger 
type, and the difference between the travel times. 
 

Departure Time TT sched.-based 
[s] 

TT hdwy-based 
[s] 

Difference 
[s] 

06:40:00 674 696 22 

06:43:00 790 900 110 

06:44:00 730 744 14 

06:47:00 852 900 48 

06:48:00 792 792 0 

06:51:00 840 900 60 



06:52:00 840 840 0 

06:55:00 840 900 60 

06:56:00 840 840 0 

06:59:00 899 900 1 

07:00:00 839 840 1 

07:03:00 898 900 2 

07:04:00 838 840 2 

07:07:00 896 900 4 

07:08:00 836 840 4 

07:11:00 893 900 7 

07:12:00 833 840 7 

07:15:00 826 900 74 

07:16:00 826 840 14 

07:19:00 812 900 88 

07:20:00 812 840 28 

07:23:00 784 900 116 

07:24:00 784 840 56 

07:27:00 788 900 112 

07:28:00 728 728 0 

07:31:00 679 739 60 

07:32:00 679 679 0 

07:35:00 624 684 60 

07:36:00 624 624 0 

07:39:00 600 660 60 

07:40:00 600 600 0 

Table 3: Strategy Cost for Example 3 
 
The largest difference in travel times is at 7:23, when passengers navigating 
based on the schedule save an expected 116 seconds compared to 
passengers navigating based on headways. One should notice, that the 
passengers navigating based on the schedule may have to wait for a very 
long time until they can board. A passenger arriving at 6:36 may have to wait 
until 7:40 until he can board a vehicle, although this is very unlikely. 
Nevertheless, it seems that this does not reflect normal behaviour. The model 
might be improved by either letting passengers board a vehicle after they 
have failed to board a vehicle at the same stop three times, for example. 
Another possibility is to let passengers choose the slow, reliable connection 
after three failures, even if they think that waiting for the next unreliable 
vehicle is more attractive. 

6 CONCLUSIONS 

The presented ideas are a first step to model passengers in schedule-based 
networks, who navigate based on headways. The difficulties of transferring 



the well-known static headway-based route choice models to the dynamic 
schedule-based network were highlighted: The cost, reliability, and frequency 
of lines change over time. In order to determine the attractive set of lines of a 
passenger at any given moment, cost, reliability and frequency of each line 
have to be defined for any given moment. 
The model is only a first step. There exist various other ways to make 
headway-based choices, especially when there is real-time information at the 
stops (Gentile, Nguyen & Pallottino, 2005; Nökel & Wekeck, 2007). The given 
examples showed that having exact information about reliabilities and 
headways is a reasonable improvement to travelling based on estimated 
average headways. However, care should be taken when transferring this 
finding to the general case; the given examples seem to be too simple yet to 
come to a general conclusion. 
One should also notice that interpreting the schedule-based strategies as 
strategies given by a portable device, while headway-based strategies are the 
ones passengers can “calculate” themselves, has one drawback: The 
presented strategy choice model is pre-trip. This means that the choices are 
made based on reliabilities as they are known before the trip starts. The real 
benefit of a portable device would be, that the reliabilities are frequently 
updated during the trip, and that the strategy is updated and optimized 
accordingly. Furthermore, departure times of vehicles could be different than 
in the schedule. Using this information would also lead to better strategies. 
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