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1. INTRODUCTION 

To prepare the Dutch regional and national strategic transport models 
(LMS/NRM) for policy questions of the future, its owner (Rijkswaterstaat – WVL) 
wants to improve the  correspondence between modelled and observed link 
speeds and route travel times; in particular for motorized traffic in the base year 
in congested situations. This paper describes a project in which the NRM-West 
(the regional model of the Randstad) is used as a test case for modelling 
improvements to the LMS/NRM to better fit with floating car data describing 
speed and route travel times.  
 
With some 7 million inhabitants, the models study area (Randstad) is the largest 
urban region in the Netherlands containing its four largest cities Amsterdam, 
Rotterdam, The Hague and Utrecht, and is one of the most important urban 
regions in North-west Europe. The region experiences heavy congestion on a 
structural basis, which means that congestion patterns (location and severity of 
queues) are highly interrelated and travel times are sensitive and volatile.  

1.1. Context 

The LMS/NRM was developed as a strategic transport model system to be 
applied on study areas such as the Randstad, and as such must be able to 
reach a stable equilibrium between destination, mode, departure time and route 
choice in a heavily congested context. In order to do so, the current assignment 
model QBLOK (Significance, 2017) aims to reach (route choice) user 
equilibrium while accounting for flow metering and spillback. Furthermore, the 
overall system incorporates a feedback loop between the assignment and the 
demand models to account for the influence of delays on the equilibrium 
between the travelers mode, destination and departure time choices. 
 
To better match observed travel times, the main focus of this research project 
is to improve outcomes from the assignment model whilst maintaining (or 
improving) the ability to reach equilibrium. The current assignment procedure 
QBLOK has proven to be hard to calibrate and/or improve and is known to suffer 
from convergence and stability issues.  
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In this research the current assignment method is replaced by STAQ 
(Brederode et al., 2010) which is not based on heuristics but solves an 
optimization problem and is consistent with traffic flow theory allowing for 
calibration on observed values for speed and flow. This should result in more 
realistic travel times.  

2. METHODOLOGY 

In order to replace the assignment model, fundamental diagrams need to be 
defined for all links in the network. Furthermore, because the assignment model 
defines the relationship between the demand in OD matrix and link flows, the 
OD matrices must be recalibrated for use with the new assignment model.   

2.1. Assignment model: STAQ 

STAQ is a quasi-dynamic traffic assignment model that has been developed to 
support transport policy development and planning in situations where both 
static and dynamic assignment models may fail: strategic applications on large-
scale congested networks. It does so by combining favorable properties from 
static traffic assignment (STA) and dynamic traffic assignment (DTA) models 
whilst maintaining the theoretical foundation of traffic flow theory.  
 
The model strictly obeys link capacity constraints, and therefore explicitly 
captures flow metering and queue formation due to congestion (just like DTA 
models do), but assumes stationary demand during a single time period (e.g. a 
whole peak hour, just like STA models do) and is therefore much more scalable 
and mathematically tractable. Furthermore, the model has proven to converge 
to the required level and does not need any more input data than a STA model 
does. STAQ is implemented as a propagation model within the StreamLine 
framework in OmniTRANS transport planning software where it is intended to 
be used for large scale urban transport models containing both freeways as 
well as urban road sections.  
 
The model uses any concave, two regime fundamental diagram for the relation 
between speed, flow and density on the link level, but in this study we use the 
quadratic linear diagram (QL) from Bliemer et al., 2014 (Figure 1). To describe 
interaction of flows on nodes the explicit node model from Tampère et al., 2011 
is used, because it complies to a set of seven requirements for first order 
macroscopic node models described in the same paper. One of these 
requirements is that the node model should comply with local supply 
constraints, which is the very reason that STAQ obeys strict link capacity 
constraints. The node model can be extended with an additional junction 
modelling component, taking into account capacity and delay effects on the 
level of turning movement as a result of traffic rules, geometry and/or signal 
schemes on the junction. In this study, junction modelling is applied on all 408 
intersections adjoined to on- and off-ramps to the motorways.  
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Figure 1: Quadratic – Linear fundamental diagram for a link with capacity: 2150 veh/h, free flow speed: 
120 km/h, critical speed: 90 km/h, jam density: 180 veh/km. 

The assignment model can be used with different route choice models, but in 
this study the multinomial logit (MNL) model is used with scale parameters set 
to one over 14% of the minimal route cost of the considered OD pair. This 
normalization to the minimal route cost makes the route choice model scale-
invariant, meaning that it is only sensitive to the ratio of different route costs, 
not their absolute values. STAQ is a multi-user class assignment, where each 
class has its own route choice parameters, free flow speed and set of network 
restrictions. Note that the model algorithm is not described here; the interested 
reader is referred to section 4 of Bliemer et al (2013).  

2.2. Network preparation 

To define the fundamental diagram for each link, its free flow speed, critical 
speed, capacity and jam density need to be set. Prior values for free flow speed 
and capacity where taken from the old assignment model, whereas critical 
speed was set by expert judgement to values shown in Table 1. Jam density 
was set to 180 veh/km for all links.  
 

free flow 
speed 

critical speed 

>=100 85 
>=80 75 
<80 93.75% of freeflow speed 

Table 1: expert judgement settings for critical speed 

For the junction modelling component, the geometry of 408 intersections 
(Figure 2) was defined using 360 degree camera footage. Intersections 
originally digitized as an ‘expanded node’ (a combination of several links and 
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nodes representing one junction) where merged back into a single node to 
prevent the formation of unrealistic gridlock due to blocking back within the 
expanded node. Furthermore prohibitions on 420 turning movements where 
defined (mainly on adjacent off and onramps).  
 

 
Figure 2: network with locations of defined intersections 

On some motorway sections, capacity refinements are needed when in reality 
the effective capacity is structurally lower than the theoretical link capacity. This 
mostly occurs on merges, weaving sections, highway intersections and slip 
lanes. In this study on the NRM-west network, the capacity was decreased on 
324 weaving sections using the Dutch equivalent of the highway capacity 
manual (Rijkswaterstaat, 2015) to calculate the capacity reduction as a function 
of the length and configuration of the weaving section and the percentage 
weaving traffic (Figure 3). 
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Figure 3: capacity reduction on weaving sections 

2.3. Matrix estimation: concept 

The (travel demand) matrix estimation problem is a bi-level optimization 
problem where in the upper level differences between observed and modelled 
link flows, and differences between the trip length distribution, trip productions 
and trip attractions between prior and estimated OD matrices are minimized, 
while in the lower level the traffic assignment problem is solved using a traffic 
assignment model (Figure 4). Although a bi-level problem corresponds to a 
Stackelberg game, most matrix estimation software threat it as a Cournot-Nash 
game and try to solve it by alternatingly solving the lower and upper level 
problem. 
 

 
Figure 4: general matrix estimation framework 

The lower level uses the OD demand matrix from the upper level and the 
assignment model to determine the relationship between travel demand on OD-
level and modelled flows on link level. For each observed link, the lower level 
outputs an assignment matrix which, for each OD-pair, contains the proportion 
of its demand that contributes to the modelled flow on the considered link. Note 
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that when multiplied by the ODmatrix, this matrix contains all traffic that uses 
the considered link. We shall therefore refer to values in assignment matrices 
as proportion factors.  
 
The upper level is merely a solver that is applied to minimize differences 
between observed and modelled link flows by changing the demand of relevant 
OD pairs in the demand matrix. It uses the assignment matrices to determine 
the set of relevant OD pairs for each of the observed links. The upper level 
outputs an updated OD-matrix. In most solvers objective function components 
and/or constraints can be added to the optimization problem. Mostly these are 
used to incorporate information on trip distribution and/or trip ends into the 
estimation.  

2.4. Upper level implementation: AVVMAT solver 

Since the implementation of a different assignment model in the LMS/NRM 
methodology implies a lot of (potential) side effects to the model system as a 
whole, we choose to not also change the matrix estimation software. Instead, 
we use the current matrix estimation software AVVMAT and preprocess its 
inputs in such a way that it is compatible with the strict capacity constraints of 
the assignment method. AVVMAT is based on the Combined Calibration matrix 
calibration program develop by Hague Consulting Group in the 1990’s. 
AVVMAT assumes a multiplicative model in which each matrix cell is a function 
of its initial value and a set of parameters (count, trip ends, trip length class, 
etc.). Furthermore AVVMAT assumes that the parameters are statistical of 
nature and therefor have a level of reliability. AVVMAT assumes a Poison 
distribution. Lindveld, 2006 describes the derivation and implementation of the 
AVVMAT OD matrix estimator in more detail. 

2.5. Lower level implementation: STAQ based assignment matrices 

In STA models, travel demand is described by a single OD matrix per class 
containing its stationary (average, peak, nth percentile) travel demand between 
all origins-destination pairs in the network during the study period. In STA 
models, all travel demand in the OD matrix will arrive at its destination by 
definition. This means that in the STA context, any proportion factors in the 
assignment matrices below 1.0 are due to spatial distribution of demand over 
different routes and are to be interpreted as route choice probabilities. 
 
In STAQ, the strict link capacity constraints and resulting congestion effects 
demand a more concise definition of travel demand regarding the time 
dimension. We define it as the demand that chooses to depart in the study 
period, no matter whether it reaches its destination within the study period. This 
means that, in the STAQ context, assignment matrices may contain proportion 
factors below 1.0 not only as a result of spatial distribution (route choice), but 
also as a result of temporal distribution of demand (flow metering by upstream 
bottlenecks and/or spillback of a downstream bottleneck).  
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The values in an assignment matrix generated with STAQ can be calculated by 
multiplying the spatial (route) proportion factor of the OD pair with any temporal 
(bottleneck) proportion factors that are encountered when traversing the route 
from origin to the considered link and then summing these proportion factors 
over any routes on the OD-pair that use the considered link. Both types of 
proportion factors are explicitly calculated within any STAQ assignment and can 
be stored on route and turning movement level respectively to be used for 
construction of assignment matrices.  

2.6. Matrix estimation with STAQ and AVVMAT 

For matrix estimation, the difference between route and bottleneck proportion 
factors is important, because whenever a bottleneck proportion factor is 
encountered, the capacity of the bottleneck causing it will dictate the amount of 
flow that can pass. This means that for all observed links downstream of an 
active bottleneck, the flow from that OD pair is insensitive to changes in the 
demand on the OD pair. Instead, as long as the bottleneck remains active, any 
change in OD demand will only result in a change of the corresponding 
bottleneck proportion factor.  
 
This is something that is not accounted for in AVVMAT or any other matrix 
estimation procedures for static traffic assignment models. These procedures 
do not distinguish between bottleneck and route proportion factors and treat all 
values in the assignment matrix as route proportion factors. This means that 
such software is not able to correctly calibrate to flows observed on links  
downstream from active bottleneck(s) because it will use all OD pairs that use 
the observed link, even when the upstream bottleneck has rendered them 
insensitive to the observed link.  
 
Therefore, in this study, any insensitive OD-pairs are filtered from the 
assignment matrices by setting all cells that have an active bottleneck 
proportion factor associated to it to zero. Recall that each observed link has its 
own assignment matrix, such that OD pairs can be sensitive to one observed 
link but insensitive to another observed link (further downstream) at the same 
time.  
 
Finally, by definition, all OD pairs are insensitive to links containing a queue in 
front of a downstream bottleneck, since flow on these links is dictated by the 
capacity of the downstream bottleneck as long as the link is in spillback state. 
In such situations the observed flow cannot be used to calibrate OD-demand. 
Therefore, in this study we discard any count locations observed in queues from 
the assignment matrices as these do not contain any information about OD-
demand. 
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Figure 5: Matrix estimation framework applied in this project 

Note that in the current matrix estimation procedure for NRM/LMS calibration 
no filtering on insensitive  OD pairs is taking place. Instead both calibration and 
evaluation make use of ‘desired flow’ (in Dutch: ‘wensvraag’) values for count 
locations that are suspected to be influenced by upstream bottlenecks. These 
desired flow values are estimated based on the observed flow values using the 
‘Tonenmethodiek’ (Transpute, 2003) but are hard to validate since the true 
desired flow cannot be measured. Therefore, the filter for insensitive OD pairs 
is an important innovation compared to the current matrix estimation procedure 
for NRM/LMS, because it removes the use of the ‘desired flow’ concept and 
replaces it with direct usage of observed count values (even when influenced 
by upstream bottlenecks) for both calibration and evaluation.  

2.7. Handling sensitivities of the route choice and node models in STAQ 

Note that the content of assignment matrices is conditional to the level of 
demand in the OD-matrices that were used by the traffic assignment model to 
generate them. Any changes to the demand matrices by the solver in the upper 
level may influence route choice and the state (active / inactive) and severity of 
potential bottlenecks. This means that (1) the required changes in demand 
should be kept to a minimum which requires a prior matrix with sufficient quality; 
and (2) assignment matrices might need updating during the optimization when 
changes in demand become too large. The combined effect is that the extent 
to which assignment matrices need updating depends on the required changes 
in demand and the sensitivities of the route choice model (for the route 
proportion factors) and the node model (for the bottleneck proportion factors). 
 
With respect to the sensitivity of the route choice model, recall that we assume 
a perception error term for route cost yielding a scale parameter of 14% of the 
max route cost for the considered ODpair. This error term reduces the 
sensitivity of the route choice model and contributes to the continuity of the 
relationship between OD demand and route proportion factors. This is 
demonstrated using STAQ equilibrium assignments on the test network 
displayed in Figure 6. Both routes in this network have equal route cost in free 
flow conditions. However, the lower route contains a bottleneck of 1000 veh/h 
which means that it becomes active when OD demand is greater than 2000 
veh/h, diverting demand to the upper route.  
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Link 
# 

Length (l) 
[km] 

Free speed (v) 
[km/h] 

Capacity (C) 
[veh/h] 

1 10 120 2000 
2 4 120 2000 
3 6 120 1000 

Figure 6: test network with one OD-pair and two routes 

The (continuous lines) in the left graph in Figure 7 shows the relationship 
between OD demand and route proportion factors under equilibrium conditions 
for this network using the MNL route choice model with a scale parameter of 
14% of the minimum route cost. To show to what extent the error term enforces 
the continuity of the relationship between OD demand and route proportion 
factors, the results of a (quasi-) deterministic route choice model (i.e. very large 
scale parameter) is also added (dashed lines). Comparing the results of these 
route choice models, it becomes clear that the error term greatly improves the 
continuity of the relationship, but a discontinuity remains. 
 

 
Figure 7: relationship between OD demand and route proportion factors(left); relationship between route 
demand  and bottleneck proportion factors (right). 

With respect to the sensitivity of the node model, recall that the model from 
Tampère et al., 2011 was chosen because, alongside other reasons, it obeys 
strict link capacity constraints. For this reason, the node model implies a 
discontinuity in the relationship between OD demand and bottleneck proportion 
factors whenever a demand change causes a bottleneck to switch from an 
inactive to an active state or vice versa. This discontinuity is clearly visible when 
looking at the relation between the demand for route 2 and the bottleneck 
proportion factor of the node on route 2 between links 2 and 3 (this is the only 
potential bottleneck in the network). Whenever demand for route 2 exceeds 
1000 (this is exactly when OD demand is 2000), the bottleneck becomes active 
and discontinuity occurs.  
 
In our matrix estimation context, an update of the assignment matrices for all 
OD pairs with routes using this bottleneck would be necessary, since all 
downstream count locations should be added or filtered from the assignment 
matrix as described in 2.6. Furthermore, all (gradient approximation) 
calculations done so far by the upper level with respect to these OD pairs are 
now useless, since they are no longer valid after the state-change of the 
(potential) bottleneck. Doing so would practically mean starting over the matrix 
estimation process with an altered prior matrix, causing unnecessary bias from 
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the original prior matrix, wasted calculation time and probably non-convergence 
of the bi-level optimization problem as a whole.  
 
The issue described in this section is present in all matrix estimation methods 
using an assignment model with strict capacity constraints. It has been 
described before in the context of matrix estimation using DTA models by 
Frederix, 2012 who referred to it as “Non-convexity [of the upper level objective 
function] due to congestion dynamics”. Frederix suggests that transitions 
between traffic regimes during matrix estimation should be avoided at all times, 
meaning that assignment of the prior demand matrix should yield the correct 
state for all potential bottlenecks and this state should be maintained during 
matrix estimation. These suggestions are operationalized within in this project 
using methods that will be described in sections 0 and 3.5.  

3. PRELIMINARY RESULTS 

This section describes results of matrix estimation for the PM peak period using 
STAQ and AVVMAT on the NRM-West with base year 2014. The NRM-west is 
a strategic transport model system containing 3.392 centroids, some 130.000 
links and around 95.000 nodes. In this project, geometry of 408 nodes was 
added to apply junction modelling on them (section 2.2).  
Because at the time of writing, the project is still ongoing, these are preliminary 
results. Final results are expected to be better, since improvements to the 
matrix estimation methodology and its input are still being made. Furthermore, 
estimation results for the AM peak and off-peak periods are omitted as these 
have not been run with the latest methodology and input values yet.   

3.1. Evaluation framework 

To assess the quality of the proposed methodology, the LMS/NRM evaluation 
framework that was also applied to the last regular matrix estimation project 
(Joksimovic and van Grol, 2016) is used.  Some changes to the framework 
where made to reflect the goals and nature of this project (a test case for 
modelling improvements to the LMS/NRM). The most important changes to the 
framework are: 
 The total number of vehicle loss hours in comparison with observed vehicle 

loss hours from van Veluwen and de Vries, 2015 is added to emphasize the 
importance of accurate modelled travel times.  

 Observed count values (instead of estimated values for desired flow) are 
compared to modelled values (instead of a modelled equivalence of desired 
flow); this is a direct result of the chosen matrix estimation method described 
in 2.6 and 2.7) 

 The level of convergence of the assignment is now added as a criterion (the 
duality gap should be lower than 5E-04; the stop criterion used to be a fixed 
number of iterations). This is expected to greatly improve stability of model 
outcomes. 
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In the remainder of this section, for the sake of brevity, only a summary of the 
evaluation framework will be analyzed. The following indicators are included in 
the summary: 
 With respect to the OD matrices, the relative differences between the 

number of trips, average trip length and sum over absolute differences per 
trip length bin in the evaluated OD matrix and observed data from OViN 
2014 (CBS, 2014).  

 With respect to the assignment results, the percentage of primary 
congestion locations modelled, the number of iteration to converge to a 
duality gap value below 5E-04, the percentage of observed routes with a 
difference in travel time less than 20% and the percentages of count 
locations with normalized T-values1 below 2.5 split up by mode and link type 
(motorway vs other roads).   

3.2. Evaluation of assignment results using the prior demand matrices 

The prior demand matrices where estimated using the demand model of 
LMS/NRM (Significance, 2017) which uses choice models estimated on data 
from the Dutch national travel diary (MON) surveys 2007-2009 (SCP, 2009). 
Because data from its predecessor survey (OViN) of 2014 (CBS, 2014) is used 
for evaluation of the OD matrices, the matrices estimated by the LMS/NRM are 
corrected to better match OViN 2014. Following Joksimovic and van Grol, 2016, 
these corrected matrices are used as prior demand matrices for matrix 
estimation. 

Table 2: evaluation of results using the prior demand matrices (summarized) 

Table 2 displays the summarized evaluation results using these prior demand 
matrices. The first three rows in the table show that the demand matrices fit 
almost perfectly to the OViN 2014, which is to be expected as they are corrected 
using this very dataset. Only 9% of the observed bottleneck locations is 
modelled, indicating that the demand is too low for the majority of bottleneck 
locations. The low number of iterations needed for convergence (8), indicates 
that there is relative little congestion in the network. This is confirmed when the 
assignment results are graphically compared with the observed congestion 
locations (Figure 8): the relative speeds in this figure are mostly high (green) 

                                                      

𝑇 = ln ((𝑐 − 𝑣)ଶ/min (𝑐, 𝑣))
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throughout the entire network, whereas they should be low (orange or red) 
upstream from bottleneck locations.  
 

Figure 8: assignment results prior demand matrices and observed bottleneck locations 

Based on these observations, we conclude that the majority of the modelled 
link flows, number of active bottlenecks and route travel times are much lower 
than the observed values. In other words, according to the observed data, the 
prior demand matrices substantially underestimate the true demand in peak 
periods and thus number of active bottlenecks. Note that the indicator for route 
travel time differences<20% seems to show a good fit, but further investigation 
shows that this is caused an over representation of uncongested routes in the 
dataset.  

3.3. Enrichment of demand matrices using congestion patterns  

Because assignment of the prior demand matrices yields almost no active 
bottlenecks (section 3.2), and because no state changes of (potential) 
bottlenecks should occur during matrix estimation (section 2.7), within the 
present project, a method was developed to enrich the prior demand matrix to 
minimize the number of under- or over-estimated active bottlenecks by the 
assignment. Because assignment of the prior demand matrices only showed 
underestimations, the emphasis in this paper lays almost solely on how to add 
demand, but the same principles could be used to remove demand in case of 
prior demand matrices that over-estimate the number of active bottlenecks.  
 

Width:  flow [veh/h] 
Colour:  modelled speed as percentage 

of maximum speed [%] 
 
 
 

:  Observed bottleneck location 
80% 100% 0% 
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The enrichment method described in this section is applied to the prior demand 
matrices beforehand the actual matrix estimation (described in 2.6). The 
method starts by identification of congestion patterns from observed data. In 
this project, data gathered for the annual congestion-location rankings from VID 
(2014) is used as a basis. For each observed active bottleneck location, this 
dataset describes the location of the head of the queue and the gravity of the 
congestion caused by the bottleneck. This gravity (in Dutch: ‘filezwaarte’) is  
expressed as the number of minutes that congestion occurred multiplied by the 
length of the queue for each respective minute, summed over the year. This 
data was derived from observed speeds from loop detectors data and by direct 
observations from the police, road authorities and road guards.  
 
To maintain consistency with the definition of the study period of NRM-west 
model used (the annual average business day in 2014) congestion during 
weekends and holidays and congestion purely caused by long-term roadworks 
was removed from the dataset. Because the enrichment is to be applied only to 
the peak periods, the dataset was split into separate datasets for the AM and 
PM periods of an average business day in 2014 and then ranked by gravity 
separately. This resulted in 79 active bottleneck locations in the PM peak 
(results from AM peak are pending). Using a rule of thumb, the annual gravities 
where translated into gravities per peak period.  
 
The enrichment process follows the approach depicted in Figure 5, but its input 
has been altered using the two steps displayed in Figure 9 to allow for 
estimation on congestion patterns instead of observed link flows.  
 
In the first step, for each bottleneck location, its gravity is converted into an 
excess demand within an average peak period using a simple point queue 
model. For the assignment model to reproduce the observed congestion 
patterns, the flow that wants to make use of the road segment causing a 
bottleneck (the bottleneck link) should be equal to the capacity of that bottleneck 
link plus the calculated excess demand. Thus, using the point queue model and 
capacities of the bottleneck links the observed congestion patterns can be 
translated into link demands that are valid for the link directly upstream from the 
bottleneck.  
 
In the second step, using the selection of bottleneck links derived from the 
observed congestion patterns, assignment matrices can be generated using 
the method described in 2.5. From these assignment matrices, the routes that 
are constrained by upstream bottlenecks is known. Because these routes 
cannot be used to influence the flow on the bottleneck link, they will be filtered 
from the assignment matrices before entering AVVMAT. However, a proportion 
of the demand for these routes still reaches these links and thus accounts for a 
part of the link flow. Therefore, the link demands derived from the congestion 
patterns are reduced by the flow on routes constrained by upstream bottlenecks 
to attain virtual count values that will be used for the enrichment.   
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Figure 9: derivation of virtual count values 

Using these virtual count values assignment matrices filtered for constrained 
routes, the solver in AVVMAT (section 2.3) can be used to perform matrix 
estimation on congestion patterns. Constraints on trip length distribution, trip 
production and trip attraction from OViN are taken into account during 
enrichment, in the same way as during normal matrix estimation.   
 
Note that, because in this project the prior demand matrices substantially 
underestimate the level of congestion, during the process, the assignment 
matrices need to be updated several times (the feedback loop between lower 
and upper level in Figure 5) to allow the lower level to update route and 
bottleneck proportion factors and to filter out OD pairs accordingly. Several 
tests led to an incremental approach in which the feedback loop was run 5 
times. In the first three runs, only a quarter, half and three quarters of the 
enrichment effect was added to the prior matrix before generating and filtering 
new assignment matrices; the fourth and fifth run directly use the enriched 
demand from the previous run. This way, OD-pairs that cause activation of 
bottlenecks in a later increment can still be used for the enrichment in previous 
increments. This leads to better a better distribution of enrichment effects over 
OD-pairs and less unintended upstream bottleneck activations. The main 
purpose of the fifth run is to allow the route choice model to settle in further.  

3.4. Evaluation of assignment results using the enriched demand matrices 

Table 3 displays the summarized evaluation results using demand matrices 
enriched using the method described in 0. Enrichment was done using 79 
observed bottleneck locations, all 288 trip length distribution constraints and all 
6748 trip end constraints. Relative weights where set at 90% for bottleneck 
locations, 75% on trip end constraints and 100% on trip length distribution 
constraints. The first three rows in the table show that the demand matrices still 
fit well to the OViN 2014, which is caused by inclusion of trip length distribution 
and trip end constraints, and because demand on only a relatively limited 
number of OD pairs is changed during the enrichment.  
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Table 3: evaluation of results using the bottleneck enriched demand matrices (summarized) 

After enrichment, 77% of the observed bottleneck locations is modelled, which 
is a big improvement over the initial 9%. The number of iterations needed for 
convergence nearly doubled to 15, reflecting the increase of congestion in the 
network. The graphical comparison with observed congestion locations (Figure 
10) indicates which bottlenecks where activated by the enrichment. From this 
figure, it becomes clear that mainly the bottleneck locations on the ring road 
Amsterdam (upper north west part of the figure) are missing. At the time of 
writing, the cause for these missing bottleneck locations was not analyzed yet, 
but it must be related to upstream bottlenecks preventing demand to reach the 
locations on the ring road and/or (trip length distribution and trip end) constraints 
in AVVMAT.   
T-values on count locations have become worse which makes sense 
considering that these are not included in the enrichment method. The demand 
matrix estimation process should take care of these differences. 

Figure 11: assignment results enriched demand matrices and observed congestion locations 

Width:  flow [veh/h] 
Colour:  modelled speed as percentage 

of maximum speed [%] 
 
 
 

:  Observed bottleneck location 
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3.5. Evaluation of assignment results using estimated matrices 

Because at the time of writing the enrichment results are not yet sufficient 
satisfactory (it has not yet been explained why 23% of bottleneck locations are 
still missing and why travel times seem to have worsened) only two first 
estimation attempts where run based on the enrichment results from section 
3.4. More attempts based on a more recent enrichment run where done 
afterwards but these produced worse results and are, for the sake of brevity, 
omitted from this paper. Given the above, the results reported in this section 
are still experimental of nature and further research and test runs (for both the 
enrichment and estimation) are needed to improve them.  
 
In both considered test runs, matrix estimation was done using 2981 count 
values across the study and influence area of the model. Earlier estimation 
attempts led to the exclusion of trip length distribution constraints to increase 
AVVMATs search space and to the inclusion of bottleneck locations to retain 
the results from the enrichment. In the first run, all 6784 trip end constraints 
where used and relative weights where set at 90% for both bottleneck locations 
and traffic counts, whereas the relative weight on trip end constraints remained 
75%. In the second run, trip end constraints were dropped and relative weights 
on congestion locations and traffic counts were set at 2.5% and 90% 
respectively in an attempt to better preserve the active bottleneck locations from 
the enrichment process. Table 4 summarizes the differences between the two 
runs and compares their settings with the enrichment procedure.  

 
Table 4: relative weights used in enrichment run and estimation attempts 

Table 5 
 
Table 5: evaluation of results using estimated demand matrices (summarized) 

 summarizes results of both estimation attempts. For easy comparison the 
results from the prior and enriched demand matrices shown earlier in Table 3 
are also included.  
 
Considering estimation attempt #1, differences in demand matrices increase 
but are still acceptable. The number of congestion locations decreases to 51%, 
indicating that there are inconsistencies between congestion locations and 
count locations and/or trip end constraints. This problem might (partly) be 
circumvented by decreasing the weights on the latter two.  Route travel times 
have improved compared to the enriched results, but area still below the prior 
results, this is yet to be explained. T-values have also improved but are still 
unsatisfactory.  
 

Attempt #1 Attempt #2

Trip lenght distribution constraints (288) 100% - -

Trip end constraints (6784) 75% 75% -

Congestion locations (79) 90% 90% 100%

Traffic counts (2981) - 90% 2.5%

Enrichment
Estimation

Constraints/inputs (quantities between brackets)
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Considering estimation attempt #2, the number of congestion locations is 
retained, but at the cost of nearly all other indicators. This is a clear indication, 
that there are inconsistencies in the input. Especially route travel time 
differences and congestion locations appear to be contradicting, whereas it is 
hypothesized that a realistic congestion pattern is a requirement for realistic 
route travel times. A similar pattern seems to exist for count values and 
congestion locations, albeit less distinct.  
 

Table 5: evaluation of results using estimated demand matrices (summarized) 

4. CONCLUSIONS AND RECOMMENDATIONS 

This paper described the use of an alternative assignment and calibration 
procedure combined with synthetic matrices of the Netherlands Regional Model 
to better fit with floating car data on speed and route travel times. The main 
focus was to improve outcomes from the assignment model whilst maintaining 
(or improving) its ability to reach equilibrium. To do so, the assignment model 
was replaced by STAQ, the estimation method and process where altered 
accordingly and test runs on the NRM-west where executed to analyze the 
effects. 
 
On the (network) supply side, fundamental diagrams where defined for all links 
in the network, and junction geometry was added to all 408 intersections 
adjoined to on- and off-ramps to the motorways within the study area. 
Furthermore, the theoretical capacity was corrected on 324 weaving sections 
using percentages of weaving traffic derived from the prior demand matrices.  
 
On the demand side, the OD matrices where recalibrated using the regular 
LMS/NRM matrix estimation software: AVVMAT, using 2981 count values while 
taking into account 6784 trip end and 288 trip length distribution constraints. To 
take the effect of flow metering on downstream links from an active bottleneck 
into account, any routes that traverse one or more active bottlenecks before 
reaching a count location where filtered from the corresponding assignment 
matrix (since the flow rate on a count location is insensitive to changes in 
demand on such routes).  
 

difference in: prior enriched estimated 1 estimated 2

number of trips -1% -1% 9% 13%

average trip length 0% 1% 6% 7%

absolute sum over bin differences 0% 1% 6% 6%

%primary congestion locations 9% 77% 51% 66%

number of iterations to convergence 8 15 16 15

route travel time differences <20% 82% 52% 63% 36%

T-values flow <2.5 car, motorways 22% 15% 43% 42%

T-values flow <2.5 freight, motorways 17% 12% 64% 60%

T-values flow <2.5 car, other roads 38% 27% 52% 37%

T-values flow <2.5 freight, other roads 33% 24% 24% 24%
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The filter for insensitive OD pairs is an important innovation compared to the 
current matrix estimation procedure for NRM/LMS, because it removes the use 
of the ‘desired flow’ concept and replaces it with direct usage of observed count 
values (even when influenced by upstream bottlenecks) for both calibration and 
evaluation. 
Sensitivities of the route choice and node models within STAQ were recognized 
as potential causes for non-convergence of the matrix estimation method. To 
avoid this problem, no transitions between traffic regimes should occur during 
matrix estimation, meaning that assignment of the prior demand matrix should 
yield the correct state for all potential bottlenecks and this state should be 
maintained during matrix estimation. 
 
Assignment results of the prior demand matrices showed that the majority of 
the modelled link flows, number of active bottlenecks and route travel times are 
much lower than the observed values. Therefore, an enrichment method was 
developed and applied to match observed congestion patterns before the 
matrix estimation procedure starts. After application of the enrichment 
procedure, the number of modelled bottlenecks increased from 9% to 77% at 
the cost of a decreased fit on observed link flows, whereas trip ends and trip 
distribution differences remained well within the acceptable region.  
 
Two first matrix estimation attempts showed that deviations in trip distribution 
and trip ends increase but can be retained within acceptable levels. However, 
serious inconsistencies appear to exist between congestion locations on the 
one side and route travel times and traffic counts on the other. The cause for 
these inconsistencies should be researched by looking for inconsistencies in 
the input data on a level much more detailed than the network-aggregated 
tables reported in this paper. 
 
In general, this project so far has shown that the methodologies for enrichment 
and estimation seem to work, but that apparent inconsistencies in the input 
should be removed. Most important analysis would be: 
 to analyze which route travel times are over- and under estimated, to find 

out what causes the decrease route travel time quality during enrichment on 
congestion patterns (e.g.: look for low observed travel times on a route that 
traverses observed congestion locations); 

 to look for observed flows that are clearly inconsistent with the gravity and/or 
location of a bottleneck location situated directly downstream. 

Closely related to the first bullet above, with respect to the primary evaluation 
criterion for route travel times, we recommend to distinguish routes with 
(substantial) congestion from other routes and/or make use of a lower tolerance 
for differences on free flow routes (as the travel time differences on these routes 
are much lower per definition). 
Once the inconsistencies are removed sufficiently, probably some tuning of the 
incremental schema applied, alongside with the weights is needed. 
Furthermore, inclusion of (a subset of) counts in the refinement and/or inclusion 
of bottleneck locations in the estimation procedure could be tested to further 
integrate the refinement and estimation procedures. This would require more 
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weight-tuning and/or small changes in AVVMAT software to allow for a wider 
range of weights but could lead to a more consistent and quicker matrix 
estimation method.   
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