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INTRODUCTION 
The increasing interest for time-varying tolling policies in transportation networks has 
highlighted the need for dynamic traffic assignment models in which users are 
allowed to choose both their route from origin to destination and their departure time. 
In the case of a single route with a bounded capacity, Vickrey (1969) derived the 
departure rate as the outcome of individual cost minimization. In Vickrey’s model, for 
a given departure time, individual costs are modelled as continuous, uniminimal and 
convex functions of the schedule delay, i.e. as a penalty for early or late arrivals at 
destination. Since then a number of extensions have been proposed, notably to deal 
with complex networks, multiple origins and multiple destinations. Most of those 
extensions (see for instance Heydecker and Addison, 2005 or de Palma and Lindsey, 
2006) are tailored for studying equilibrium in metropolitan networks, in which 
commuting travel patterns are assumed: the preferred arrival time to a destination is 
often taken from a normal distribution around a peak hour, and individual schedule 
costs essentially follow Vickrey’s model. 
 
Unfortunately, those assumptions do not hold in the case of large interurban 
networks. In this case, the economic behaviour of a trip-maker with respect to its 
preferred arrival time varies widely from one to the other. Some travellers may want 
to be at destination early in the morning, some others late in the evening, while some 
others require to be at destination absolutely before a given hour, etc. Moreover, a 
significant percentage of the travellers may wish to avoid peak days, by rescheduling 
their departure day to the day before or to the day after, if incited to do so. 
 
This article presents extensions made to a dynamic traffic assignment model to 
encompass those needs. It has the following outline. Section 1 contains a brief 
review of the literature. It helps in highlighting the distinctive features of our model, 
which is introduced in section 2. The two main algorithms used to compute a user 
equilibrium with departure choice are provided in section 3. Some results from 
numerical studies are presented in section 4, before concluding. 
 
1. LITERATURE REVIEW 
The seminal paper on trip scheduling (Vickrey, 1969) essentially deals with morning 
commute. A fixed number of commuters is considered, travelling from a single origin 
to a single destination, through a single route. Congestion occurs at a bottleneck of 
bounded capacity. Users are modelled as microeconomic agents minimizing a cost 
function that depends on travel time and schedule delay. In the simplest version of 
the model, Vickrey considers homogeneous users that all have the same preferred 
arrival time and the same cost function, linear in travel time and piece wise linear 
convex in schedule delay. The main results from this model are recalled in 
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subsection 1.1.  Since then, several extensions have been proposed. Some of them 
are the topic of subsection 1.2. However, as shown in subsection 1.3, some empirical 
evidences from field data indicate that those various extensions may not fulfil the 
requirements of departure choice modelling in interurban networks. 
 
 
1.1.  Main results from the bottleneck model  
A set of commuters wish to reach a CBD accessible by one route with bounded 
capacity. Each user is characterized by a preferred arrival instant *h , and assesses 
the decision of departing at an instant h using a cost function of the form: 

( ) ( )+− ++= )(.)(.)(.)( hdhdhthG γβα  (1) 
where: 

•  )(ht  is the travel time when departing at h, 

• *)()( hhthhd −+=  is the delay incurred at arrival when departing at h, 
• α  is the value of time of the commuter, 
• β  [resp. γ ] it the marginal cost of arriving earlier [resp. later] than preferred, 

• ( )−  and ( )+  stand for the positive and negative part of the delay. 
There are two standard ways of describing the set of users. Either one considers a 
finite number of categories of commuters, differing by their *h  (and also possibly their 
value of time, value of arriving late or early); or one considers that users have 
preferred arrival instants distributed among a set of possible values. In the later case, 
the “S-shape” assumption is made: there is a single interval during which the density 
of commuters exceeds capacity. This assumption makes the model analytically 
tractable, and induces a travel time pattern similar to the one with a unique *h  shared 
by all commuters. 
 
A typical equilibrium situation is depicted in Fig.1 for a bottleneck of capacity K. The 
set of users is modelled by a cumulative distribution *X over the set of their preferred 
arrival instants. Their choices of departure instants are given by the cumulative 
distribution +X . The bottleneck model allows one to compute the cumulative 
distribution −X  of users at the exit of the bottleneck.  
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Figure 1: The bottleneck model. 

 
Fig.1 can be interpreted as such: the horizontal difference between +X  and −X  (i.e 

)(ht ) gives the amount of time needed to traverse the bottleneck, when entering the 

bottleneck at instant h. The horizontal difference between −X  and *X  (i.e. )(hl ) 
gives the delay at arrival. The traversal time )(ht  is a piecewise function with only two 
admissible slopes and a single maximum. It increases at the beginning of the 
congestion period, when users are arriving earlier than preferred. When )(ht  is 
decreasing, users are arriving later than preferred. Note that the simple form of the 
delay cost function (i.e. the two last terms of Eq.1) implies the piece wise linear 
shape of the travel time function. Under more general assumptions, it would be 
smoother. 
 
1.2.  Extensions to the bottleneck model 
Assumptions made in Vickrey’s model are indeed well tailored for morning 
commutes: the simple congestion model makes sense for trips toward a small CBD 
area; a unique preferred arrival time is adapted for work starting time; finally a convex 
schedule delay cost function does fit with job schedule constraints. Since then, the 
transportation community has investigated the field in two main directions. Some 
works, mainly from transport economists, have focused on users heterogeneity. 
Others have proposed extensions to whole networks. 
 
Departure time choice with users heterogeneity 
Heterogeneity in preferred arrival times can be addressed either in discretely fashion, 
by allowing only a finite set of preferred arrival times, or continuously using a 
distribution. The finite case has been studied extensively by Lindsey (2004) while the 
continuous case was first treated by Hendrickson and Kocur (1981). Heterogeneity 
pertaining to the costs of travel time and of schedule delay has been studied, among 
others, by (de Palma et al.,1993) and (Van Der Zijpp and Koolstra, 2002). Other 
extensions include the modelling of stochastic demand and capacity, multiple routes 
or elastic demand (see (de Palma et al.,1998) for a review). When users are at 
equilibrium, the bottleneck model predicts a congestion pattern with a single peak in 
travel time. In the numerous extensions, the resulting congestion patterns are very 
similar to the homogeneous case. When considering a finite number of preferred 
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arrival instants, there is a limited number of peaks in travel time (at most one per 
preferred arrival instant) and a spontaneous segregation among users is observed. 
Commuters with different preferred arrival instants depart at different instants 
(Lindsey, 2004). The case where users’ preferences are distributed over an interval 
has received less attention. Papers in this line mainly considered “S-shape” 
distribution (See Smith,1984 and Daganzo, 1985). As exposed in section 1.1 this 
case is practically equivalent to the one with a single preferred arrival time and 
produces exactly the same travel time pattern. 
 
Departure time choice on networks 
The bottleneck model has been extended to networks, in an attempt to produce 
operational planning models. The computation of the user equilibrium in such a 
context is known as the dynamical traffic assignment problem with departure time 
choice. Friesz et al (1993) first proposed a formulation of the user equilibrium with 
both route and departure time choice. His model considers users spread between 
origin-destination (o-d) pairs, with a unique preferred arrival instant by o-d. Since then 
most of the models proposed in the literature rely on Friesz’s original paradigm (see 
for instance Wie et al, 2001). Rather than focusing on users heterogeneity, this part 
of the literature has made considerable efforts to improve congestion representation 
by integrating sophisticated traffic models. 
 
 
1.3.  Empirical evidences and their practical implications for departure time 
choice modelling. 
Two assumptions underlie the bottleneck model and its various extensions: (i) 
preferred arrival times are taken from a discrete set of values and (ii) delay cost 
functions are convex. As discussed in this subsection, those two assumptions appear 
not to be appropriate means of modelling economic preferences of inter-urban trip 
makers. 
 
Let us first have a look at the travel time patterns and flow rates observed in 
interurban trips. Fig.1(a) shows the variations of travel time between Lyon and 
Montpellier, two cities of southern France, on a holiday departure day. The pattern is 
quite far from the single peak predicted by the bottleneck model: at least two peak 
periods can be observed, along with significant variations elsewhere. The flow rate 
on the same o-d pair is plotted in Fig.1(b). One can observe significant flow rates 
during the whole day. This is clearly not consistent with a single preferred arrival 
instant. 

 



©  Association for European Transport and contributors 2009 
 

5 

 
(a) 

 
(b) 

Figure 1. (a)Travel time pattern between Narbonne and Orange on the 14th of July 2007.  
(b) o-d flows between Narbonne and Orange (courtesy of ASF). 

 
Another interesting point is the diversity of inter urban travellers. As opposed to the 
morning peak where the road traffic is mainly composed of commuters, inter urban 
trips have a wide variety of purposes, inducing significant differences in value of time 
and delay cost functions. In the same order of idea, a significant part of the traffic is 
composed of heavy vehicles, which has important consequences on congestion 
modelling. 
 
Finally the results of a survey organized in 2008 by three French motorway operators 
show that, during summer holydays, trip makers can be divided into two categories: 
some can absolutely not afford arriving later than scheduled (e.g. because they need 
catching the key for their rental). Some others are far less constrained at arrival and 
are even ready to reschedule their departure day, if they can benefit from lower 
congestion and toll fares. This last point is especially interesting as it shows that in 
inter urban context the convexity of delay cost functions can no longer be assumed. 
Indeed in this case the cost of the delay does not necessarily decrease as the arrival 
time gets closer to the preferred schedule. A traveller considering to leave one day in 
advance to avoid traffic jams will not necessarily consider arriving at 2 a.m. a better 
option. 
 
To sum it up, empirical observations show that, for inter urban trips, a departure time 
choice model should differ from the classical “bottleneck-like” approach, with respect 
to the three following requirements: 

1. A high level of heterogeneity regarding both preferred schedules (several 
preferred arrival times per o-d pair) and economic characteristics (value of 
times and schedule delay cost functions) is required. 

2. Multi class congestion modelling is to be considered. 
3. Users should be able to choice their day of departure as well as the time of the 

day. 
 
 
2. THE DYNAMIC ASSIGNMENT PROBLEM WITH DEPARTURE TIME CHOICE. 
 
In order to meet the modelling challenges exposed just below, we present an 
extension based on the LADTA 1 model proposed by Leurent (2003). The dynamic 
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assignment with departure time choice is modelled in a supply demand framework 
where the supply is a network of bottlenecks and the demand a set of microeconomic 
agents. Those agents are characterized by economic preferences (value of time and 
delay cost function), temporal preferences (preferred arrival time) and physical 
characteristics (vehicle type). The network is subject to congestion and hence to a 
given demand the supply model associates a set of arc traversal time functions. 
Similarly the demand reacts to the supply by adjusting the time varying flows at the 
entrance of each route of the network according to the level of congestion. The 
existence of solutions of such assignment problems has been established recently by 
Meunier and Wagner (2009) in a continuous game theory framework. 
 
In its original version, LADTA deals with multi-class dynamic traffic assignment 
considering a fixed demand: the demand is expressed as a dynamic o-d matrix that 
solely depends on departure instants from the origins. In the sequel, this problem is 
called the user optimum assignment with fixed departure time. It is stated as a fixed 
point problem in subsection 2.1, along with some helpful notations. Next, subsection 
2.2 states the user optimum assignment with departure time choice problem in a 
similar way. 
 
2.1.  User optimum assignment with fixed departure time 
Let us model a road network as a directed graph ),( ANG = , where N  is a finite set 
of nodes and ( )NNA ×⊆  is the set of arcs inG . A route r  in G  is a finite, non 
empty, sequence of connected arcs. R  denotes the set of routes in G . Users of the 
transportation network are modelled as a continuum of microeconomic agents, where 
each user belongs to a user class u . U  denotes the set of user classes. To each 
route r  in R is associated a route traversal time function ( )ht ur , , where h  is a 

departure instant from the head node of the route, taken in a continuous set of 
instants H . Also, a route traversal cost function ( )hc ur ,  is associated to each route r  

in R . If ( ) dodoi ≠= ,,  is a distinguished pair of nodes in NN × , then RRi ⊆  denotes 

the set of routes starting at o  and ending at d . ( )hx ui,  is the density of users wishing 

to depart from o  at instant h , and ( ) ( )∫
<′

′′=
hh

uiui hdhxhX ,,  is the cumulated distribution of 

such users. 
 
Route choice 
Given a fixed set I  of o-d pairs, a demand { }uiUI XX ,, = , and a set of route traversal 

cost functions { }urUR cc ,, = , a route choice RC  is the definition of a set { }uriURI XX ,,,, =  

of distributions of users on routes per o-d pair such that, for all ( )uhi ,,  triples, the two 
following equations hold: 

( ) ( )hXhX ui
Rr

uri

i

,,, =∑
∈

 (2) 

( ) ( ) ( ){ }hchchx ur
Rr

ururi
i

,,,, min0
∈

=⇒≠  (3) 

Eq. (2) expresses that, at every departure instant, the demand of users of class u  on 
the o-d pair i  is distributed among the routes of this o-d pair. Eq. (3) expresses that 
only routes of minimal cost are chosen. Using a compact notation: 

( )URUIURI cXX ,,,, ,RC=  
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Traffic flowing 
Knowing a distribution URIX ,,  of users on routes, a traffic flowing TF is a function that 

returns a set of routes traversal cost and time functions. Using a compact notation: 
( ) ( )URIURUR Xtc ,,,, TF, =  

Details concerning the computation of a traffic flowing are omitted here. The reader 
interested by the actual implementation of traffic flowing in LADTA can refer to 
(Aguiléra and Leurent, 2009). 
 
User optimum assignment with fixed departure time 
Given a demand UIX , , a user optimum assignment with fixed departure time 

( )UIX ,UOA  is a route choice URIX ,,

~
 such that: 

( ) ( )( ){ }URIUIURIUI XXXX ,,,,,,

~
TF,RC

~
UOA ∈=  (4) 

 
2.2.  User optimum assignment with departure time choice 
 
Delay cost function 
A delay cost function D is a positive and continuous mapping between delays and 
cost units, such that ( ) +∞→dD  when +∞→d . In practice, D  is often such 

that 0)0( =D , but this is not a requirement. 
 
Optimal routes and departure instants 
When travelling from o  to d , if a user uix ,  wants to reach the destination d at a given 

arrival instant *h , following a given route r  in iR , he has to choose a departure 

instant h  such that ( ) 0*
, =−+ hhth ur . More generally, if uD  is a delay cost function 

associated to the user class u , and if uix , wishes to minimize its total traversal cost, 

he has to choose a departure instant h  that minimizes  
( ) ( ) ( )( )*

,,,
,* hhthDhchrG uruurhu

−++=  

 
Departure choice 
For a given arrival instant *h , let ( )**

, hx ui  be the density of users of classu on the o-d 

pair ( )doi ,=  wishing to minimize their total traversal cost from o to d . Let ( )*
, huiΓ  the 

subset of HRi × where the total traversal cost *,hu
G  reaches its minimum. Then any 

set of density functions *,, hui
χ  such that : 

 

( )
( )**

,

),(
,,

),(
,,

*
,

** hx ui

hhr
hui

HR
hui

ui

== ∫∫
Γ∈

χχ  

 
defines a departure choice URIX ,, , using the demand density functions defined 

by ( )∫ •=
*

* ,
,,,,

h
huiuri rx χ . Using a compact notation: 

( )( )URURUIURI tcXX ,,
*
,,, ,,DC=  (5) 
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User optimum assignment with departure time choice 
Given a demand *

,UIX , a user optimum assignment with departure time choice 

( )*
,

*UOA UIX  is a route choice URIX ,,

~
 such that: 

( ) ( ){ })
~

TF(,DC
~

UOA ,,
*
,,,

*
,

*
URIUIURIUI XXXX ∈=  (6) 

 
 
3. ALGORITHMS. 
For a given o-d pair, an exact computation of the departure choice as defined by 
Eq.5 involves managing the possibly infinite set of routes on this o-d (by definition, 
each route is finite, but looping routes are not excluded). However, it appears 
reasonable in practice to concentrate on a finite subset of efficient routes. The 
departure choice problem is then casted down to the departure time choice on a 
single route, for which an algorithm is detailed in subsection 3.1. An algorithm for the 
combined route choice and departure time choice is then proposed in subsection 3.2. 
 
3.1.  Departure time choice on a single route 
Let r  be a route and assume we are given the traversal time rt  and cost rc  for every 

departure instant h on that route. Now suppose that a demand on that route is 
expressed as a distribution *

rX  of users, as a function of preferred arrival instants   
*h . All users in *

rX  share a same delay cost function. This section presents an 

algorithm, called DTCR, which computes the distribution ( )hX r  at the entrance of the 

route for every departure instant h and consistent with the pair ( rt ; rc ). The basic 

idea of the algorithm is as follows: for each *h  of a sample of preferred arrival 
instants, find the set of departure instants that lead to a total traversal cost that is 
“close” to the minimum. Then, spread uniformly over this set the volume of users with 
preferred arrival time close to *h . 
 
Algorithm DTCR 
Inputs 

• rc  (resp. rt ) : the route traversal cost (resp. time) function of  r . 

• ∫
<

=
*

)()( ***

hh

rr dhhxhX  : a demand with departure time choice on r , such that  

0)( ** =hxr  for every *h  outside a range [ ]**; ba hh  of preferred arrival instants. 

• D : a delay cost function. 

• Gδ  : a small positive number. 
• n  : a positive integer. 

Output 
• )(hX r : a cumulated distribution of users for every departure instant from the 

origin of r  
Begin 

Let *
kh  , nk K0=  be a discrete sampling of [ ]**; ba hh . 

0←rX  
For nk K1=  
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1. Let *
,krX∆ be the number of users in the interval [ ]**

1; kk hh −  

∫
−

←∆
*

*
1

)(**
,

k

k

h

h

rkr dhhxX   

2. Let *h be the midpoint of [ ]**
1; kk hh −  

2

*
1

*
* −+

= kk hh
h  

3. Compute the total cost function G  such that : 
( ) ( ) ( )( )*hhthDhchG rr −++=  

4. Let g be the minimum value of G  
( ){ }hGg

Hh∈
← min   

5. Compute the set *H  where G  is close to its minimum 
( ){ }GghGHhH δ<−∈← ,*  

6. Compute the function )(, hX kr∆  such that the users *
,krX∆  are uniformly 

distributed on *H . 
7. Add krX ,∆ to rX  

krrr XXX ,∆+←  

 End For 
End  
 
3.2.  Combined route choice and departure time choice 
Algorithm DTCR solves a departure choice problem with no route choice and a fixed 
supply. We are now going to take advantage of it in order to solve the combined 
route and departure time choice problem. At each iteration k  of the algorithm, we are 
given a fixed departure time o-d matrix ]1[

,
−k

UIX , and we first find the user optimal 

assignment with fixed departure time, thus obtaining for every instants and on every 
o-d pair an optimal route together with its traversal time and cost ( )][

,
][

, , k
ui

k
ui tc . Using 

DTCR it is then possible to compute the optimal departure time decision of the users 
with respect to ( )][

,
][

, , k
ui

k
ui tc  and to derive a new fixed departure time o-d matrix ][

,
k
UIX . 

   
 
Algorithm UOA* 
Inputs 

• *
,UIX : a set of cumulated distributions over [ ]** ; ba hh  

Output  
• URIX ,, : a user optimum assignment with departure time choice 

Begin 
 ( )]0[

,
]0[

,
]0[

, ,DTCR UIUIUI tcX ←  

1←k  
Do 
1. Compute a user optimum assignment with fixed departure time from the 

demand ]1[
,

−k
UIX   
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( ) ( )]1[
,

][
,

][
,

][
,, UOA,, −← k

UI
k
UI

k
UI

k
URI XtcX  

2. For each o-d pair i and user class u , compute the auxiliary demand ][
,
k
uiY  using 

( )][
,

][
, , k

ui
k
ui tc  as inputs of the DTCR algorithm 

  ( )][
,

][
,

][
, ,DTCR k

UI
k
UI

k
UI tcY ←  

3. Increase k  and compute kw  
1+← kk  

kwk
1=  

4. Compute ][
,
k
UIX   

( ) ][
,

]1[
,

][
, 1 k

UIk
k
UIk

k
UI YwXwX +−← −  

While ][
,
k
UIX differs significantly from ]1[

,
−k

UIX  

( )][
,,, UOA k
UIURI XX ←  

End 
 
4. NUMERICAL EXAMPLES. 
 
The two algorithms exposed in section 3 have been implemented within the LTK 2,  
an implementation of LADTA that allow for computing dynamic traffic assignments on 
large networks (Aguiléra and Leurent, 2009). In this section, the results coming from 
two test cases are presented. The first one, called SR91, is a small network with one 
origin, one destination, two routes and two user classes. Albeit simple, it illustrates 
combined route and departure time choice. It is also a well known case study for 
transportation economists and as such most of the data regarding both scheduling 
cost functions and value of time are available in the literature. The second example, 
called VDR, is an application to a large network. 
 
It has to be clear to the reader that what follows in subsections 4.1 and 4.2 has to be 
understood as numerical experiments. Their sole purpose is illustrative, and the 
conclusions, figures and charts presented therein have no particular meaning outside 
the scope of this paper. 
  
 
4.1.  The SR91 example 
 
The State Route 91 is located in the orange county (California, USA) and was faced 
to an important congestion problem at the beginning of the 90’s. The road is 
connecting a residential zone to a labour pool. Before 1995, it had a capacity of 8000 
pcu/h, and four lanes in each direction. In 1995 two lanes were added in each 
direction. The two additional lanes are equipped with time varying tolls, in both 
directions. The tolls are used as a congestion management tool to alleviate traffic on 
peak hours by spreading demand. Yet this management is complex: a variation in the 
toll fare can induce both trip rescheduling and rerouting. Commuters are highly 
heterogeneous regarding their arrival time preference (Sautter, 2007), so the travel 
time pattern at equilibrium is likely to have a non trivial form. 
 
User classes 
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Two user classes, subscripted r  and p , are considered. Both of them have a delay 
cost function D  under the classic V-shape form: 

( ) ( )+− += dddD ..)( γβ  
They differ only by their value of time α , their unit cost of arriving late, proportional to 
β  and their unit cost of arriving early, proportional to γ . For user class p ,  pα  is 

taken from Lam et Small (2001) study on SR91. pγ  and pβ  are the ratios obtained by 

Small (1982) in its study for San Francisco. In dollars, the values are 87.22=pα , 

 38.12=pγ  and   12,20=pβ . For user class r , along the line of the technical report 

from Sautter (2007), it is assumed that the ratios rr αβ /  and rr αγ /  are the same, 
and that pr αα 2= . 

 
Demand and supply 
The distributions of desired arrival instants for each user class are also taken from 
Sautter (2007) and are based on historical data from the road operator Cofiroute, in 
charge of the SR91 since 1995. The capacities of two routes are set to 8000 
pcu/hour for the free route, and 2500 pcu/hour for the two additional lanes. 
 
Scenarios 
Two scenarios have been simulated. The first is called untolled. The amount of the 
toll fare on the two additional lanes was set to 0, and the user equilibrium with 
departure time choice has been computed using the LTK. The second scenario is 
called tolled. The time-varying toll fare was set equal to the curve plotted in Fig.2(d). 
A comparative study allows us to discuss the net effect of tolling. 
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(a) (b) 

  
(c) (d) 

Figure 2 : Equilibrium values of the SR91 under two scenarios. 
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Results 
The results of each route and each scenario are plotted in Fig.2(a-c) . In both cases 
the results are consistent with the bottleneck model. In the untolled scenario, the 
travel time pattern shows a double peak with slopes corresponding to the one 
induced by the ratios αγ  and αβ . The travel time maxima are obtained when 
delays are close to 0. Users are using indifferently the two routes and the travel time 
is rigorously the same. In the tolled scenario, the two users types are segregated by 
the toll ; only users of the category r uses the tolled route.  
The travel time pattern is affected by the time-varying toll. Let us note that the tolling 
scheme globally reduces travel times. This is achieved by two mechanisms. On the 
tolled route the toll tends to spread the traffic, thus reducing congestion. On the 
untolled route, the reduction is less pronounced and is due to a small reduction in 
traffic resulting of the departure of the users of category r. 
 
Table 1 exemplifies the results of an hypothetical socio-economic analysis based on 
the results of the simulation. The benefit of the toll is driven by the time savings made 
by the class r, which is natural as they have the entire benefit of the faster tolled 
lanes. Yet the increase in traversal costs of class p is compensated by a decrease in 
delay costs. This is not straightforward but a closer inspection reveals that as class r 
uses only very marginally the free route in the tolled scenario, the class p has 
relatively more capacity than in the untolled scenario. However as there is no toll on 
their route they tend to schedule their trips regarding to congestion costs, so the 
benefit of this additional capacity results mainly in a decrease in delay cost. 
 

 Untolled  Tolled Difference 
Category p r P r p r 
Traversal Costs 2947 2525 3000 2432 -53 93 
Delay Costs 1873 2923 1823 2911 50 12 
Total/Category 4820 5448 4823 5343 -3 105 
Total/Scenarii 10268 10166 102 

Table 1: Results from a hypothetical socio-economic analysis (values are in M$). 
 
 
4.2.  The VDR example 
 
During summer holydays, a significant part of the trans-european road traffic is 
concentrated in the Vallée du Rhône (VDR) area. Tourists coming from northern 
Europe (including Belgium, the Netherlands, Germany and Great Britain), travel 
across France to reach (or return from) southern countries (e.g Italy and Spain), 
meeting on their way people from the Paris area. The situation is depicted in Fig.2 
The map on the left hand side (Fig.2(a)) shows the location of the VDR area and the 
structure of traffic flows from foreign countries. The network of main roads in the 
French network is mapped in Fig.2(b), along with the set of o-d pairs this example is 
concerned with. The main axis in the VDR area in the A7 motorway, located between 
Lyon (LY in Fig.2(b)) and Orange (OR in Fig.2(b)). The distance between those two 
cities is around 200km.  
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The VDR areaThe VDR area

 

 
- motorways and national roads 

- o-d pair 
 

(a) the VDR area (b) od-pairs under study. 
Figure 2: The major road network in France. 

 
During summer Saturdays, traffic conditions on motorways are usually very bad, 
especially on the A7, because of high levels of congestion. To better operate the 
network, motorway operators may be interested in studying time varying tolling 
strategies. Results presented in the sequel illustrate the ability of our model to handle 
such kind of studies on large networks. 
 
Input data 
Most of the data was provided to us by courtesy of companies of the Vinci Group 
(ASF, APRR and Cofiroute) operating the motorway network in the area of interest. 
The network comprises 2404 arcs and 939 nodes. We knew for each arc its capacity, 
free flow travel time for passenger cars, and travel price for passenger cars. The 
demand was expressed for 628 o-d pairs. The simulated day was July the 14th, 2007. 
Two user classes, named vl and vls, were considered. Those two classes 
correspond to passenger cars1.  They share most of their characteristics (same free 
flow travel time, same toll prices, etc). They are distinguished only by their delay cost 
functions, plotted in Fig.3(a). For user class vl, the penalty of arriving later than 
scheduled grows linearly at a very high rate, while the penalty of arriving sooner 
grows at a lower rate. The delay cost function of user class vls is a little bit more 
complex. Around 0, it has a classical V-shape, except that the cost of a early arrival 
grows faster than the cost of a late arrival. Between 6 and 18 the cost of the delay is 
infinite. Around 24, the shape of the delay cost function is similar than around 0, 
except that it is shifted up by an amount that correspond to the cost of rescheduling 
the departure to the day after. The values of the delay cost evolve similarly around 
24. This expresses the cost of rescheduling the departure to the day before. 
 
 

                                                 
1 The traffic of heavy vehicles is ignored since traffic regulation rules forbid truck traffic during some of 
the most congested days in summer. 
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We were provided with a departure choice demand matrix *
,UIX . For each user class 

u , o-d pair i  and arrival instant *h , *
,UIX  gives the density ( )**

, hx ui  of users wishing to 

minimize their total traversal cost.  
The number of user classes, the user cost functions and the departure choice 
demand matrix were provide as such. They have been inferred for the simulated day 
from a large survey conducted by the motorway operators in year 2008. 
 
The traversal cost of an arc a  for a user of class u  entering the arc at an instant h  is 
a linear combination of the monetary price uap ,  and of the arc traversal time uap , . It is 

given by: 
( ) ( ) ( )hthphc uauuaua ,,, .α+=  

where uα  is the value of time for the user class u . The user classes vl and vls are 

such that vlα  is by far lower than vlsα . 
 
The monetary price uap ,  includes the amount of the toll fare. The existing toll fares 

were made time dependant by multiplying them by a time dependant factor, which is 
plotted in Fig.3(b). This factor is greater than one (i.e. the fare is higher than usual) 
between 5 and 17. Its is lower than 1 between 20 and 34, meaning that the amount 
of the fare is lower than usual between 8 p.m of the simulated day and 10 a.m of the 
day after. 
 
Calibration 
Most of the motorways of the network under study are equipped with closed toll 
systems. As a consequence, we had at our disposal an accurate time-dependant  o-d 
matrix for the simulated day, built from the toll stations records. This allowed for a fine 
grain calibration of the model, by adjusting its parameters until simulated traffic flows 
computed by a (fixed demand) traffic assignment match well traffic counts data, for a 
significant percentage of motorway sections. 
 
Results 
Once the model calibrated, we could run a user optimum assignment with departure 
time choice and time-varying tolls. Results were compared to the fixed-demand, 
constant-toll assignment. The difference between the fixed-demand and the 
computed demand is synthesized in Fig.3(d). The two plots are the sum of the 
cumulative flows at departure, for all o-d pairs. The variations of the demand 
computed with departure time choice clearly indicates that a significant part of users 
have rescheduled their departure day to the day after. This is confirmed when 
observing the evolution of the pattern of congestion during the simulated day, 
Fig.3(c). The plotted value is an estimate of the total time spent in congestion: at a 
given instant during the day, the input flow rate of each arc is multiplied by the time 
spent in queue on this arc; the sum for all arcs is plotted. In the fixed-demand 
scenario, congestion starts soon after 0 a.m. and vanishes around 9 p.m, with a 
significant peak between 9 a.m and 12. With departure time choice, a fraction of the 
demand has rescheduled its departure to the day after. This leads to a congestion 
period that last half longer than in the fixed demand scenario. 
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(d) Demand.  

Figure 3: Inputs and outputs for the VDR example. 
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CONCLUSION 
We have presented a model for dynamic traffic assignment with departure choice in 
interurban networks. While most of the models concerned with departure choice 
modelling are designed with commuting patterns in mind, it has been shown that the 
requirements for an appropriate modelling of interurban trips departure choice are 
substantially different. Using a continuous, rather than discrete, distribution of 
preferred arrival instants seems to better reflect the heterogeneity of users’ 
preferences at arrival. The convexity of delay cost functions has to be relaxed, since 
it does not allow for some desired behaviours (e.g. day to day departure 
rescheduling). 
Semi empirical algorithms have been proposed, implemented, and illustrated by two 
numerical examples. The results are encouraging and show some of the benefits 
practitioners can take from using our approach when studying congestion 
management schemes. A substantial amount of work is still needed to properly state 
the appropriate numerical solution techniques.  
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Notes 
1 LADTA stands for Lumped Analytical Dynamic Traffic Assignment. 
2 LTK stands for the LADTA ToolKit. 
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