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1 INTRODUCTION 
Static Origin-Destination (O-D) matrix estimation can be formulated as a bi-level 
programming problem. The upper level problem tries to estimate a matrix that 
satisfies certain constraints, such as traffic counts, row and column totals, and 
similarity to an apriori matrix. The lower level problem typically relates the matrix 
to link flows through an equilibrium assignment. 

This framework can be extended to the dynamic case. However computational 
issues such as convergence and efficiency of the solution algorithms become a 
serious  problem. 

One of the central issues is the calculation of a convergent series of descent 
steps in the upper level of the problem. Recently a solution was presented by 
[Codina and Montero (2002)] based on the concept of subgradients. Although the 
use of subgradients is computationally expensive, they report improvements in 
convergence and in the speed of convergence. 

In this paper we propose to alleviate the problem of finding convergent descent 
steps for the upper level problem in the dynamic case.  

We will derive analytic derivatives of the upper level problem ( )TZ  with respect to 
the matrix cells, and calculate them using the analytic stochastic dynamic traffic 
assignment (DTA) method proposed in [Chabini and He (1990)]. This assignment 
method uses a fixed number of paths per O-D pair, and adopts stochastic route 
choice. Both characteristics reduce the difficulties in our estimation problem. 

2 BACKGROUND 
O-D matrix estimation (whether dynamic or static) is an essential part of 
transportation modelling. Transportation models are used to support 
infrastructure investment decisions, support what-if analyses on policies, to set 
fare structures, etc.  
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In the past 4-5 years we have seen an interest in within-day-dynamic transport 
modelling, specifically within-day dynamic traffic assignment. The reasons for this 
interest are: 

1) within-day dynamic traffic assignment can be more accurate and realistic in its 
treatment of congestion, specifically its location and spillback effects; 

2) within-day-dynamic transportation models are better suited to support 
dynamic traffic management (DTM) measures; 

3) dynamic traffic assignment, which in recent years has become 
computationally feasible, is a more natural way of modelling traffic than static 
assignments. 

The drawbacks of dynamic traffic modelling are of a practical nature:  

1) the assignment models are just becoming available as operational software 
packages 

2) dynamic demand modelling is not yet as developed as static demand 
modelling 

3) much more data than before are needed to feed and calibrate the models 

4) applying dynamic models is more expensive than applying static models 
because it takes more time and some re-training 

5) the visualisation and interpretation of the model results also take more time 
and effort. 

In this paper we address the question of how to estimate one specific input 
dataset: dynamic O-D matrices. In this we aim at transportation planning 
applications instead of real-time applications.  

In general, O-D matrices are not observable unless the vast majority of people 
can be tracked on a continuous basis (which incidentally might become a reality 
with the increasing penetration of cell-phones). Typically observable 
characteristics of an O-D matrix are production and attraction (e.g. from 
household surveys public registers), traffic counts (loop detectors, video cameras 
etc.), partial matrices (e.g. through cordon surveys), and some route choice 
information (e.g. through licence plate surveys). The challenge is to use these 
data to estimate a full (dynamic) O-D matrix.  

As noted in the literature on static O-D matrix estimation such estimation 
problems tend to be extremely over-parametrised (see e.g. [Maher (1983)]), 
which may be addressed through the use of apriori information, in the form of 
apriori O-D matrices. In transportation planning one often has access to 
reasonable apriori matrices in the form of synthetic O-D matrices.  

Synthetic O-D matrices are derived from transportation planning models which 
can be based on disaggregate mode-destination choice models, possibly 
supplemented by time-of-day choice. Such models are usually static models that 
assume equilibrium conditions, which may or may not give an accurate account 
of the actual situation in the study area. 
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Despite the drawbacks of such models, one can take the view that such models 
summarise the available data, and therefore give the best possible apriori 
estimate of an O-D matrix. By combining a synthetic static O-D matrix with a 
suitable departure-time choice model, one can arrive at an estimate of an apriori 
dynamic O-D matrix, or O-D-t matrix. 

Given that we have an apriori O-D-t matrix, and that we have sufficient 
confidence in its structure, we wish to estimate an O-D-t matrix using this apriori 
matrix and traffic observations. 

2.1 Literature overview 
Static and dynamic O-D matrix estimation have a similar mathematical structure, 
and a review of static O-D matrix estimation methods is therefore an obvious 
step. For a general overview of the issues related to static O-D matrix estimation 
we refer to [Cascetta (2001)] and [Ortuzar and Willumsen (2001)]; a survey of the 
literature on static O-D matrix estimation can be found in [Abrahamsson (1998)].  

Bi-level programming provides a natural formulation of the static O-D matrix 
estimation problem, as shown in [Florian and Cen (1991)] and [Yang et al. 
(1992)]. The use of equilibrium assignments as lower-level problem are reported 
in [Yang et al. (1994)], and used in [Yang (1995)], [Maher et al. (2001)], [Drissi-
Kaitouni and Lundgren (1998)], and [Florian and Cen (1991)]. 

As is noted in the literature, the O-D matrix estimation problems are easy to 
formulate but difficult to solve, the main problem being to find a suitable descent 
direction as noted in [Drissi-Kaitouni and Lundgren (1998)].  

Recent advances in calculating suitable descent directions for static O-D matrix 
estimation are reported in [Patriksson (2001)], [Codina and Montero (2002)], 
[Codina et al. (2002)], and [Lundgren and Peterson (2001)]. 

Real-time dynamic O-D matrix estimation was reported in [Camus et al. (1997)] 
and in [Ashok and Ben-Akiva (1993)].  A maximum-likelihood approach for the 
case of a fully monitored road corridor was proposed in [Van der Zijpp (1996)] 
and successfully applied in [Van der Zijpp (2002)].  

The possibility of reducing dynamic O-D-t matrix estimation to static matrix 
estimation on a Space-Time Expanded Network (STEN) was noted in [Bell and 
Iida (1997)], and applied in [Lindveld and Van der Zijpp (2000)], and [Van der 
Zijpp and Lindveld (2000)]. In this case the STEN becomes one of the 
endogenous variables, which complicates convergence checks. 

 

3 THE DYNAMIC MATRIX ESTIMATION PROBLEM 
Like static O-D matrix estimation, the dynamic O-D matrix estimation problem 
can be stated as a bi-level programming problem in which the upper level 
minimises an objective function Z  with respect to the unknown matrix given by: 
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with { } Kk
rs
k

rs
∈= TT  an O-D-t matrix, Kk ∈  a time period, rs  an O-D pair, and a  a 

link and; in which the lower level enforces a dynamic equilibrium flow pattern,  
represented in a link-based quasi-VI1 link formulation as: 
 ( )( ) ( )*** 0. aaaaa vvvvvc Ω∈∀≥−       (2) 

The variables used are: { } Kk
rs

k
rs T ∈= ˆT̂  the matrix estimate, { } Kk

rs
kT ∈= 0,rs,0T  the 

apriori matrix, { } Kkkll S ∈=S  the observable totals, { } Kkkll S ∈=
~~

S  the observed totals, 

( ) ( ){ }
Kk

rs
ak

rs
a v

∈
= TTv  the assigned flow, { } Kkaka v ∈= ~~v  the observed link flow, *

av , 

and ( )*
ac v  the corresponding link cost.  In the following we will drop the vector 

notation, and use kak
rs

k SvT ,,  to denote { } { } { } KkkKkakKk
rs

k SvT ∈∈∈ ,, . The structure of this 
bi-level problem is shown in Figure 1. 
 

Constraints
( ) kkkk vvvvc ∀≥− 0, **

Objective function
( )kk Z

k

TT
T
minargˆ =

kT ( )kakv T

 

Figure 1: Bi-level formulation of the dynamic matrix estimation problem 

A description of dynamic traffic assignment a formulated as a quasi-VI problem 
can be found in [Chen (1999)] and [Bliemer(2001)]. The Dynamic Traffic 
Assignment (DTA) method that we are using, is given in [Chabini and He (1998)]. 

3.1 The objective function 
The objective function Z  can take various forms: e.g. least squares, maximum-
likelihood, or Bayesian estimation. To arrive at an efficient estimation approach, 
we will split the objective function into three parts: a part ( )( )a

rs
az vTv ~,0  that deals 

with the apriori matrix, an assignment-independent part ( )llz SS
~

,1  with 

( )
∑

∈

=
lIrs

rs
k

rs
klkl TS δ , { }1,0∈rs

klδ  representing a group of O-D-t cells (e.g. zonal 

production or attraction) and an assignment-dependent part: ( )( )ap
rs

apz vTv ~,2  (with 
p  a specific path): 

                                                             
1 In a VI problem the space Ω of feasible solutions is fixed; in (2) the feasible flow pattern depends on the 
travel-times that result from the flow pattern, so that ( )vΩ=Ω . See [Bliemer (2001)]. 
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A possible choice for the objective functions is constrained generalised least-
squares with diagonal weighting matrices: 
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 ( )( ) ( )( )2,2,
2

~~, ∑ −=
ak
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sr

apkakap
sr

ap vvwz TvTv      (6) 

Whereas the GLS estimator can be solved explicitly, we have a CGLS estimator 
which cannot, (due to the constraint that 0≥rs

kT ). An iterative solution algorithm 
for CGLS estimators is presented in [Bell (1991)].  
 
The structure of the objective function is shown in Figure 2;  

Z

0z 2z

0,rs
kT

rs
kT̂ apkv̂

2~l
kv

Optimisation

Dynamic 
Traffic Assignment

1z

lkS

 

Figure 2: structure of the objective function 

3.2 Link with game-theory 
As noted in [Yang et al. (1992)], [Maher et al. (2001)] and [Florian and Chen 
(1991)], the bilevel nature of the problem allows one to view the solution as a 
game-theoretic equilibrium of a game in which the upper level problem (matrix 
estimation) and the lower level problem (user-equilibrium assignment) are 
modelled as players. The players take turns in adjusting their action to optimise 
their criterion function, and can observe the result of the previous player’s action. 

According to [Basar and Olsder (1999)], if the upper level is unaware of the 
response of the lower level to changes in the matrix, the game corresponds to a 
Cournot game. If the upper level is completely aware of the response of the lower 
level to changes in the matrix and anticipates on these, the game corresponds to 
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a Stackelberg leader-follower game, with the upper level as the leader and the 
lower level as the follower.  

As noted in [Yang et al. (1992)], the iterative solution of upper- and lower level 
problems corresponds to a solution algorithm for Cournot games, in which each 
player tries to maximise his payoff non-cooperatively while assuming that his 
actions do not affect other player’s actions.  

As changes to the matrix (the upper level problem) affect the flows in the lower-
level problem, the Cournot-type game does not seem an appropriate model, and 
[Maher et al. (2001)] report that the static matrices estimated using Cournot and 
Stackelberg games can be different. 

Influence factors, as defined in [Yang (1995)], can be used to account for the 
transport of information from the lower level to the upper level. A possible choice 
of the influence factors is the Jacobian of the output of the lower level problem 
(flows) with respect to the control variables of the upper level problem (the matrix 
cells). From a game theoretic point of view one would expect a Stackelberg game 
to be over sooner than a Cournot game (all other things being equal); it is hoped 
that this will lead to more efficient solution methods for dynamic matrix 
estimation. 

4 SOLUTION METHODS 
In general, the matrix-estimation problem is a bilevel programming problem, 
which is generally recognised as difficult.  

Rigorous solution methods have been proposed such as the penalty methods 
described in [Marcotte and Zhu (1996)] and the half-space projection described in 
[Clegg and Smith (2001)]. 

Heuristic solution methods have been proposed in [Yang et al. (1992)], [Yang 
(1995)], and [Maher et al. (2001)]. 

4.1 Rigorous solution methods 
Penalty methods 

The bilevel problem can be solved directly using penalty methods. The penalty 
methods proposed in [Marcotte and Zhu (1996)] work by defining a penalised 
optimisation problem with the following objective function: 

EZZ kk
µµ +=         (7) 

with Z  the upper-level objective function, E  a gap-function associated with the 
lower-level objective function, and kµ  a weight, and solving a sequence of such 
problems defined by a sequence of weights { }kµ  that tends to infinity.  

The half-space projection method 
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If Z  is the upper level objective function, and E  is the lower level objective 
function (giving a measure of disequilibrium of the traffic assignment: 0=E  when 
equilibrium is reached), and a possible function for E  is given in [Smith (1984)]. 

The idea is to determine a simultaneous descent direction for the upper and the 
lower problem, but to give precedence to the minimisation of the lower problem 
(the assignment) as long as its objective function exceeds a certain theshold ε .  

The simultaneous descent direction is defined as: 
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with 
ε

λ
E

= , and 


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∇
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
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



≥
∇
∇

= 0,
E
E

H δδ         (9) 

and ε  a threshold. For each value of ε  a minimisation algorithm is applied with 
εδ  as the search direction. The final solution is obtained by sending ε  to 0. 

4.2 Heuristic solution methods 
A heuristic algorithm proposed in [Yang et al. (1992)] alternatively minimises the 
upper or the lower level problem while holding the other one constant; this 
iterative optimisation-assignment algorithm is the classical transportation 
planning approach towards O-D matrix estimation. This heuristic corresponds to 
a Cournot game. 

A refinement consists of linearising the map that relates flows and the O-D 
matrix: 

 ( ) ( ) ( )** TTATvTv −+≈        (10) 

A natural choice for the matrix of influence factors is the Jacobian of the 
assignment map (although this is complicated to calculate). 
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In [Maher et al. (2001)] the difference of the flows and matrices is used to 
produce the linearisation.  

From (8) the need for gradients of the objective function Z is clear. Recalling that 
the objective function Z is a function of the O-D-t matrix cells rs

kT , we need to 
calculate the derivatives: 

( ) ( ) ( ) ( ) ( )
rs

k

rs
k

rs
k

rs
k

rs
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rs
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rs
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rs
krs

k T
Tz

T
Tz

T
Tz

T
TZ

Z
∂

∂
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∂
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+
∂

∂
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∂
∂
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with: rs
kL  the set of all parameters that act on matrix cell rs

kT . 

The resulting derivatives are: 
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∂ 0,00 2        (12) 
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The first and second terms do not involve traffic flows, and can therefore be 
calculated with comparative ease. The third term part of the derivative of the 
objective function involves the derivative of path flow w.r.t. to the matrix cells 

( )
rs

k

rs
kak

T
Tv

∂
∂

, and is much harder. In order to derive expressions for 
( )

rs
k

rs
kak

T
Tv

∂
∂

 we will 

first present the analytic dynamic assignment procedure we use, and use this to 
calculate (truncated) expressions for the derivative in chapter 5. 

5 THE DYNAMIC TRAFFIC ASSIGNMENT PROCEDURE 
Several implementations of DTA models exist that are based on micro-simulation 
(e.g. DYNAMIT, INTEGRATION, AIMSUN),  packet simulation (CONTRAM) and 
at least one that uses macroscopic traffic simulation (METANET). However, we 
will be using an analytic discrete-time Dynamic Traffic Assignment (DTA) 
procedure to model the relationship between dynamic traffic flows and the O-D-t 
matrix. The advantage of an analytic assignment procedure is that is easier to 
obtain derivatives of the traffic flow w.r.t. changes in the O-D-t matrix. 

We will adopt the DTA procedure described in [Chabini and He (1998)]. This DTA 
procedure uses a fixed limited set of paths, and must therefore be expected to 
yield an approximation of the true user-equilibrium, except in networks with very 
few route alternatives. We are addressing this issue heuristically by determining 
an initial path-set using a Monte-Carlo approach on the unloaded network 
followed by several iterations of dynamic network assignment followed by 
shortest path search on the loaded dynamic network after assignment. 
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For dynamic O-D matrix estimation, dynamic link flows are needed, as would 
result from the solution of (2). This quasi-VI problem however must solve the 
route-choice and traffic propagation problem simultaneously, and is harder to 
solve than a combination of a path-based VI formulation for route choice 
combined with a special-purpose Dynamic Network Loading (DNL) algorithm.  

The DTA proposed in [Chabini and He (1998)] uses this insight, and consists of a 
Stochastic Route-Choice Model and an analytic Dynamic Network Loading part 
(DNL). 

5.1 The stochastic route-choice model of the DTA 
The route-choice model assumes a stochastic user-equilibrium: for each O-D pair 
(r,s) at any time t, the perceived experienced travel time of a path that is chosen 
equals the minimum perceived experienced travel time. In the implementation we 
use, the path-choice probabilities are derived from a C-logit model, but the model 
(and the software) can work with more sophisticated route-choice models. 

Given the path costs and the demand, the user-equilibrium path flow rs
kpf  is 

related to the O-D demand rs
kT and the route-choice probability rs

pkP  as:  

rs
pk

rs
k

rs
pk PTf =          (15) 

A dynamic generalization of the conventional static user-optimal (Wardrop) 
condition with path travel time defined as experienced (actual) travel time. The 
condition can be expressed as follows: 

rs
k

rs
pkc π≥*          (16) 

[ ] 0* =− rs
k

rs
pk

rs
pk cf π         (17) 

0≥rs
pkf          (18) 

The users' route choice behaviour model can be formulated (see [Chabini and He 
(1998)]) as an equivalent Variational Inequality (VI) problem: 

 [ ] 0*

0

* ≥−∑∑∑
=
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K

k rs p
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pk ffF        (19) 

with: 

 [ ] rs
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rs
pkrs
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rs
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c
PffF

∂

∂
−= ***        (20) 

where the route costs depend on the travel time, wich in turn depends on the link 

travel times that result from the DNL. If we assume that kpsrrs
pk

rs
pk

f

c
,,,0 ∀>

∂
∂

, then 
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we have that [ ] 0** =− rs
pk

rs
pk

rs
pk Pff  when [ ] rs

pk

rs
pkrs

pk
rs
pk

rs
pk

rs
pk f

c
PffF

∂

∂
−= *** . Therefore the 

equilibrium path flow is: 
rs

pk
rs

k
rs

kp PTf ** =          (21) 

The route choice probabilities rs
pkP*  are calculated through a C-logit model to 

account for route-overlap (see [Cascetta (2001)]): 

∑ −

−

q

CFV

CFV
rs

pk
qk

rs
qk

pk
rs
pk

e

e
P*         (22) 

with pkCF the commonality factor of all routes p and all other routes q between r 

and s, and rs
pkV  the systematic part of the path utility function. Although the 

framework supports general forms of rs
pkV , we will use the simplest form possible:  

 ( )∑
∈

=
pa

akak
rs
pk XV τ         (23) 

with akX  the total amount of traffic on link a during period k, as defined below. 

5.2 The DNL   
As noted in [Chabini (2001)] if the travel time on individual links during each time 
interval is known, then the flows can be constructed through simple network 
loading. However if the flows depend on the network conditions then the link 
travel times that result from the loaded network may not be consistent with those 
used to load the network in the first place. In other words a fixed-point problem 
results.  

The DNL algorithm (called the “C-load” algorithm) listed below calculates a 
consistent set of flows and travel times is a single pass. The limitation of this 
method is that it is a path-based DNL that uses a fixed number of paths. 

The discrete-time DNL works with two types of intervals: long intervals ∆ , with  
flowfree

aAa

−

∈
=∆ τmin ,         (24) 

and short intervals δ   

M
∆

=δ          (25) 

M a positive integer 
The amount of traffic on a link at time instant kd: ( )δkX rs

ap  is the difference 

between the cumulative inflow ( )δkU rs
ap  and the cumulative outflow ( )δkV rs

ap  at that 
time, given by:  
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( ) ( ) ( )δδδ kVkUkX rs
ap

rs
ap

rs
ap −=        (26) 

The inflow rate on a link is the path flow for the first link on a path, and the 
outflow of its upstream neighbour for all other links: 

( )
( )

( )







=
a'after directly  follows a

ppath on link first  is a

' ifkv

ifkf
ku
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rs
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δ

δ
δ     (27) 

The cumulative inflows are related to the inflow rates as: 

( ) ( )∑
=

=
k

j

rs
ap

rs
ap jukU

0

δδδ        (28) 

The cumulative outflow during period k consists of the inflows of all time periods l 
that exit no later than period k. This means that the time of entry plus the travel 
time at the time of entry does not exceed k: ( ) ( )δδτδ 1−≤+ kla . This leads to: 

( ) ( )
( )

∑
∈

=
kJj

rs
ap

rs
ap

a

jukV δδδ        (29) 

With the index set: ( )kJa defined as: 

( ) ( ) ( ){ }δδτδ 10 −≤+≤= klllkJ aa       (30) 

The link travel time during time period kd is given by ( )δτ ka , which is related to 

the total traffic flow on the link ( )δkX rs
ap  through a link-performance function 

defined by ( )( )δkXD aa :  

 ( ) ( )( )δδτ kXDk aaa =         (31) 

The total amount of traffic on link a ( )δkX a  is the sum of the path-flow related 
amounts of traffic: 

( ) ( )∑=
rsp

rs
apa kXkX δδ         (32) 

 ( ) ( ) ( ) pasr
rs

ap
rs
ap

rs
ap VUX ,,,0000 ∀===       (33) 

The link outflow rate, formally the derivative of the cumulative link outflow rate, is 
approximated as: 

 ( ) ( ) ( )( )
δ

δδ
δ

1−−
=

kVkV
kv

rs
ap

rs
aprs

ap       (34) 

5.3 The structure of the DTA as a combination of route-choice and DNL  
The relationship between these variables within the complete DTA is illustrated in 
Figure 3: At the to we have the O-D-t matrix rs

kT , which is split into route-flows 
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rs
kpf  through the application of route-choice probabilities rs

kpP .  The route flows rs
kpf  

yield route-specific link flows rs
aku  when multiplied by the dynamic path-link 

incidence variables rs
apkδ  that result from the DNL level of the model.  

kp,τ

rs
pkP

rs
kT

ka,τ

rs
pkf

rs
kau ,

rs
pkaδ

rs
apkV

rs
apkvrs

apku

rs
apkU

rs
apkX

DNL level

DTA level

akvaku

akU

akX
akV

aku

 

Figure 3: structure of the DTA model proposed by Chabini and He 

At the DNL level we have the calculation of cumulative outflows ( )δkV rs
ap , which 

lead to link outflow rates ( )δkvrs
ap , which define the inflows ( )δku rs

ap  of downstream 
links. The link inflow rates can be summed to obtain the cumulative link inflows 

( )δkU rs
ap , which combine with the cumulative link inflows to yield the amount of 

traffic ( )δkX rs
ap  on each link in each time interval per path. The path-dependent 

traffic loads can be summed to obtain the total link loads ( )δkX a , which 

determine the link travel times ( )δτ ka , which finally determine the dynamic link-

path incidence matrix rs
pkaδ  and the path travel times ( )δτ kp

a . 

The DTA procedure yields dynamic link traffic flow rates ( )δkvrs
ap  which 

correspond to observable quantities. 

5.4 Relevance of the DTA description for the O-D-t estimation problem 
As the DTA algorithm has in itself a bilevel structure with the route choice as 
upper level problem and the DNL as lower level problem, the dynamic O-D matrix 
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estimation problem has three levels instead of the usual two in the case of static 
O-D estimation. This complicates the calculation of a descent direction for the O-
D matrix estimation problem. 
 
However, when the lower level conditions are satisfied, a linear relationship 
between O-D-t matrix cells and dynamic link flows results: 
 ( ) ∑=

rsp

rs
k

rs
apk

rs
kak TTv α         (35) 

6 CALCULATION OF TRUNCATED DERIVATIVES OF THE OBJECTIVE 
FUNCTION 

We propose to calculate truncated values of the linkflow derivatives wirth respect 
to the matrix cells using a sensitivity analysis of the link flows. Sensitivity 
analyses are reported in [Patriksson, (2001)], [Tobin and Friesz (1988)], and [Bell 
and Iida (1997)]. 

We can simplify these calculations by making a number of assumptions: 
1. the number of paths per O-D pair is limited, and given in advance  
2. stochastic user-equilibrium assignment is used throughout 
3. absense of constraints 
4. absense of back-blocking; we have vertical queuing 

The first assumption ensures that we will not have to worry about additional paths 
becoming active as the O-D flow changes: all paths receive nonzero flow 
regardless of their level of service. This assumption can be relaxed by searching 
for new paths after the assignment has finished. 

The second assumption ensures that the path flow pattern corresponding to user-
optimality is unique, and that we will not have to deal with the issue of selecting 
sets of pathflows. This is not restrictive. 

The third assumption ensures that we will not have to worry about the effect of 
the constraints on the derivatives. This is a restrictive assumption. 

The fourth assumption frees us from greater interdependence between link flows 
and matrix cells caused by back-blocking. This restricts the area of application to 
cases with limited congestion. 

6.1 Relating link flows to path flows 

The derivatives 
( )

rs
h

rs
ap

T

kv

∂

∂ δ
 can be calculated in a number of ways, depending on 

the amount of information on the behaviour of the second and third level that we 
assume present in the toplevel.  

As the DNL gives path-specific link flows, we can start by decomposing the 
derivative of the total link flow into the derivatives of the path-specific link flows: 
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( ) ( )
∑∑ ∂

∂
=

∂
∂

rs p
rs

h

rs
ap

rs
h

a

T

kv

T
kv δδ

       (36) 

Using (34), we can write: 

( )
( ) ( )( )

∑
∈

∂
−∂

−
∂

∂

=
∂

∂

Jj

rs
h

rs
ap

rs
h

rs
ap

rs
h

rs
ap T

jV
T

jV

T

kv

δ

δδ
δ

1

     (37) 

and using (29) we can write : 

 
( ) ( )

∑ ∂
∂

=
∂

∂

j
rs

h

rs
ap

rs
h

rs
ap

T

ju

T

jV δδ
 

Because of (27) we can write: 

 
( )

( )

( )










∂

∂
∂

∂

=
∂

∂
−−

path on thelink first   theis 

 preceeds 

aif
T

jf

aaif
T

jv

T

ju

rs
h

rs
ap

rs
h

rs
pa

rs
h

rs
ap

δ

δ
δ

 

This means that almost all of the terms 
( )

rs
h

rs
ap

T

ju

∂
∂ δ

 can be calculated recursively, 

and what remains is to take the derivative of the path flow at the entrance of the 
path. From (15), the equilibrium flow is ( ) rs

pk
rs

k
rs

kp PTjf =* , so that: 

( )
jh

rs
jkrs

h

rs
jhrs

hrs
h

rs
h

rs
jh

rs
h

rs
jp P

T

P
T

T

TP

T

f
δ+

∂

∂
=

∂

∂
=

∂

∂
      (38) 

6.2 Proportional assignment: a partial Stackelberg game 
If we assume that the upper level has no information about the response of the 
lower levels, we in fact assume proportional assignment corresponding to a 
Cournot game. The form of the derivatives can be read off from Figure 4: 

 



 

© Association for European Transport 2002  
  

rs
kT

rs
pkf

rs
kau ,

rs
pkaδ

rs
apkV

rs
apkv

DNL level

DTA level

akv
 

Figure 4: influence diagram for proportional assignment 

The derivative is: 

( ) ( ) ( )∑
∈

=
∂

∂

Jj

rs
ap

rs
aphrs

h

rs
ap jPj
T

kv
δδϕ

δ
     (39) 

Which is to assume proportional assignment in the upper level problem. 

( ) ( ) ( )∑∑∑
∈

=
∂

∂

rs p Jj

rs
ap

rs
aphrs

h

a jPj
T

kv
δδϕ

δ
     (40) 

6.3 Other effects considered: towards a full Stackelberg game 
By incorporating the effects of the feedback loops shown in Figure 3, other terms 
will appear in the derivative. Their calculation is more involved and will be 
reported in a subsequent paper. 

6.4 Calculation of dynamic assignment fractions 
Due to the way the DNL algorithm is set up, no information is available regarding 
the precise O-D-t cells that contribute to a particular link flow. However, this 
information can be retrieved from the output of the DTA as described below. 
Shown in Figure 5 are the trajectories of individual O-D-t cells as they are 
assigned. The assignment fractions can be read off from the diagram 
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Figure 5: trajectories in the DTA 

 

The relationship between the link outflows and the matrix cells is given by eqn (), 
with the assignment fractions rs

aphkϕ  defined as: 

 ( )















∈=

k
ah

if

k
ah

if

ka
h

if

rs
aphk

 period during
link on  remains  period from pathflow  theif

1

 period during
link  touchespartially   period from pathflow the

1,0

 period during link 
not touch does  period from pathflow the

0

ϕϕ  

Defining : 

       ( )δτδ hht paa +=1  

       ( ) ( )( )δτδ 111 +++= hht paa    

The following six possibilities exist: 
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This gives the following assignment fractions: 
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δ
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The assignment fractions can be calculated as follows: 

 

Step 0: (Carry out DTA)  

Complete DTA algorithm; 

Step 1: (Calculate assignment fractions)   
for i do   

for (r,s) do   

      for rsKp ∈  do  

            while pa ∈  do  

                    [ ]outin tt ,  =  

                      Calculate_arrival_and_departure_times;  
                    Calculate_assignment_fractions; 

                    Store_assignment_fractions_in_cells;  
                    a = a->nextlink; 
            endwhile ap  

      endfor rsKp ∈  

endfor (r,s) 
endfor i  

7 DISCUSSION AND CONCLUSIONS 
In this paper we have presented a method for dynamic O-D matrix estimation 
based on an analytic stochastic path-based DTA procedure. The method has 
certain restrictions: a fixed number of paths, and no (capacity) constraints.  

Due to the fact that the DTA is analytic and the restrictions that we impose, we 
can calculate the gradient of assigned link-flows w.r.t. O-D-t matrix cells. This 
allows us –in principle- to solve the dynamic O-D matrix estimation problem that 
corresponds to a Stackelberg game. 

We note however that if we are prepared to forego an exact solution of the D-T 
matrix estimation problem in favour of different but related problem formulation 
that corresponds to a Cournot game, that problem can be solved using 
derivative-free methods, but may take more iterations of the DTA procedure.  

We hope to be able to present numerical results during the presentation of this 
paper. 
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