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Abstract

Microscopic simulators embed numerous traffic models thatenthem detailed and
realistic tools appropriate to perform scenario-basedensitivity analysis. This realism
leads to nonlinear objective functions with no availableseld form and containing poten-
tially several local minima. As nonlinear, stochastic analeation-expensive models, their
integration within an optimization framework remains didiflt and challenging task. We
believe that in order to perform both fast and reliable satiah optimization for congested
networks, information from the simulation tool should bentned with information from
a network model that analytically captures the structurdnefunderlying problem.

This paper presents a surrogate that combines the infemé&tm a calibrated mi-
croscopic traffic simulation model of the Lausanne city eefbumont and Bert, 2006),
with an analytical queueing network model (Osorio and Bieg, 2009a) that resorts to
finite capacity queueing theotg capture the key traffic dynamics and the underlying net-
work structure, e.g. how upstream and downstream queussant how this interaction is
linked to network congestion. This network model, whichgists of a system of nonlinear
equations, has been successfully used in past work to atsaffie signal control problem
(Osorio and Bierlaire, 2009b).

We integrate this surrogate within a derivative-free (D&$tregion optimization frame-
work (Conn et al., 2009a). Resorting to a DF algorithm isipaldrly appropriate for noisy
problems where the derivatives are difficult to obtain artdrotinreliable. This is also the
case when the evaluation of the objective function is coatprially expensive, or when
the simulation source code is unavailable. In the field afidp@rtation, the simulators
typically fall into all three of these categories.

The framework is illustrated by solving a fixed-time signahtrol problem for a sub-
network of the Lausanne city center. The performance of énweld plans is compared to
that of an existing plan for the city of Lausanne.

1 INTRODUCTION

Deriving optimal traffic management schemes for urban ragidiorks typically relies on the
use of microscopic simulation tools that capture in detad behavior of drivers as well as
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their interaction with the network infrastructure. Thegaidation tools can provide accurate
network performance estimates in the context of scenaagetb analysis or sensitivity analysis.
Nevertheless, their integration within an optimizatioanfrework remains an intricate process.
A given traffic management scheme can be formulated as:

min Blf(z,2,p, )],
where the objective is to minimize the expected value of tablé network performance mea-
sure f. This performance measure is a function of a decision orobwéctorx, endogenous
variablesz, exogenous parameterand a random componentThe feasible space consists
of a set of constraints that link to z, p and f. For instance, a traffic signal control problem
can takef as the travel time and as the green splits for the signalized lanes. Elements such
as the total demand or the network topology will be captuned,bwhile the distribution of the
demand (route choice decisions) and the capacities of gimak&zed lanes will be captured by
z. The random componentdescribes the noise associated with a given realizatign of

The various traffic models embedded within the simulator eniala detailed and realistic
model, but lead to nonlinear objective functions with noilade closed form, and containing
potentially several local minima. Since these are stoahasbdels, we can only derive es-
timates of E[f]. Additionally, computing these estimates is computatilgrexpensive, since
they involve running numerous replications. As a nonlirséachastic and evaluation-expensive
problem, it is complex to address.

We believe that in order to perform both fast and reliableutation optimization for con-
gested networks, information from the simulation tool dddue combined with information
from a surrogate network model that analytically captunesstructure of the underlying prob-
lem. In this paper, we propose such a surrogate. First, weeptea literature review of
surrogate-based SO methods (Section 2). In Section 3 wergrése optimization framework
and the surrogate model. We then show how this method appliadixed-time traffic sig-
nal optimization problem (Section 4). We comment on impletagon issues (Section 5) and
present empirical results in Section 6.

2 LITERATURE REVIEW

Barton and Meckesheimer (2006) provide a classificatioreaestiew of simulation-optimization
methods. Continuous SO problems fall into two categoriesectlgradient and metamodel
methods. Direct gradient methods estimate the gradiehedimulation response, and then re-
sort to stochastic gradient-based techniques such asastochpproximation Spall, 2003. The
simulation function’s gradient can be estimated with direethods (e.g. perturbation analy-
sis), which require knowledge of the underlying probabdiprocess (e.g. input probability
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distributions). In particular, automatic differentiationethods allow the exact evaluation of
gradients but require the source code of the simulation htodge available (see Conn et al.
(2000) and references herein). The gradient can also beasti with indirect methods, which

use only function evaluations (e.g. finite difference, dilameous perturbation Spall, 2003).
Although there have been significant advances and novebappes for gradient estimation Fu
et al., 2005; Fu, 2006, methods that rely on direct derieaittsformation often require more

function evaluations, and their convergence is sensitiibé accuracy of the gradient estima-
tion.

Metamodel methods use an indirect-gradient approach byuabng the gradient of a sur-
rogate model (or metamodel), which is a deterministic fiamctinstead of the gradient of the
simulation response. The main advantage of a metamodegbmgach is that the stochastic
response of the simulation is replaced by a deterministtamedel response function, then
deterministic optimization techniques can be used. Metiisoare often a linear combination
of basis functions from a parametric family. The most comrapproach is the use of low-
order polynomials (e.g. linear or quadratic). Spline medhelve also been used, although their
use within an SO framework has focused on univariate or lat@functions, and as Barton
and Meckesheimer (2006) mention: “unfortunately, the rpogular and effective multivariate
spline methods are based on interpolating splines, whicé lite applicability for SO”. Radial
basis functions have also been proposed Oeuvray and Ber2809. The existing metamodel
methods fix apriori a functional form for the metamodel (ejgadratic). The functional forms
considered are general-purpose forms, that are chosed bagkeir analytical tractability, but
do not take into account any information with regards to thectic objective function, let
alone the structure of the underlying problem.

In this paper, we use a metamodel method to perform SO. Themoekel of interest com-
bines information from the simulator and from an analytioatwork model. For a given prob-
lem, the analytical model will yield a different functionfairm for the objective function. The
metamodel proposed in this paper goes beyond existing noetidrapproaches since the func-
tional form is problem specific. This comes at the cost ofudieg a framework that is particu-
larly suited for network optimization but not intended fobirary optimization problems.

In order to integrate the proposed metamodel within an iegsiptimization method, we
review the algorithms that allow for an arbitrary metamodéiese methods are called multi-
model or hybrid methods. They share a common motivation¢chvig to combine the use of
models with varying evaluation costs (low versus high-figighodels, or coarse versus fine
models).

A trust-region optimization framework for unconstrainemipems allowing for multiple
models was proposed by Carter (1986) (see references Hergrevious multi-model frame-
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works). His work analyses the theoretical properties and/ele a global convergence theory
for several types of multi-model algorithms. It allows fasnguadratic models as long as at
least one model is a standard quadratic with uniformly bedncurvature.

The Approximation and Model Management Optimization/Feaork (AMMO or AMMF)
is a trust-region framework for generating and managingcuesece of metamodels. There
are several versions of the algorithm: for unconstraineablems Alexandrov et al., 1998,
bound constrained Alexandrov et al., 2000, inequality tansed Alexandrov et al., 1999,
generally constrained Alexandrov et al., 2001. Althouglhestrictions are imposed on the type
of surrogates allowed, it is a first-order method that regpithat the model and the objective
function, as well as their first-order derivatives, coirci@ each major (or accepted) iterate.
Thus the metamodel must always behave as a first-order Testli@ms approximation. Thisis a
strong restriction if the function is noisy and expensivevaluate.

The Surrogate-Management framework (SMF) proposed by &ualal. (1999) is a derivative-
free method for bound constrained problems. Itis based areetdearch technique called pat-
tern search. Since direct search techniques typicallyirequany function evaluations, they use
a surrogate model of the objective function to improve thdgueance of the algorithm. The
surrogate model used is an interpolated kriging model. Negktess, interpolation techniques
are inappropriate for noisy responses.

The Space Mapping (SM) technique and its many versions Bamdlal., 2006; Bandler
et al., 2004 is a simulation-based optimization technigatuses two metamodels: a fine and a
coarse model. Both models are often simulation-based. daese model is constructed based
on a transformation of the endogenous variables (“spaceimg) that minimizes the error
for a sampled set of high-fidelity response values. Nevirtise SM relies on the assumption
that via a transformation of the endogenous variables taeseamodel will exhibit the physi-
cal/mathematical properties of the fine model AlexandraVlagwis, 2001 and as Bandler et al.
(2004) mention “the required interaction between coarsdefidine model, and optimization
tools makes SM difficult to automate within existing simolat’. Alexandrov and Lewis (2001)
give a comparison of the AMMO, the SMF and the SM methods.

Conn et al. (2009a) recently proposed a trust-region diresfree framework for uncon-
strained problems. This framework allows for arbitrary ambddels and makes no assumption
on how these metamodels are fitted (interpolation or regmesslo ensure global convergence
a model improvement algorithm guarantees that the modéis\axa uniform local behavior
(i.e. satisfy Taylor-type bounds) within a finite number tess.

Derivative-free (DF) methods do not require nor do they et approximate derivatives.
Resorting to a DF algorithm, rather than to first or secon@woadgorithms, is therefore appro-
priate for noisy problems where the derivatives are diffitubbtain and often unreliable. This
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is also the case when the evaluation of the objective funei@omputationally expensive, or
when the simulation source code is unavailable, the simutatust then be treated as a black
box Moré and Wild, 2009. In the field of transportation, theasiators fall into all three of these
categories. Thus we will opt for a DF approach.

Among the two main strategies used to ensure global cormeggdine search and trust
region methods, the latter are more appropriate for ousstnce they “extend more naturally
than line search methods to models that are not quadraticpasitive Hessians” Carter, 1986.
Additionally, the most common approach for fitting metamedeithin a TR framework is
interpolation. Nevertheless, for noisy functions we bedi¢hat regression is more appropriate
since it is less sensitive to the inaccuracy of the obsemati

The framework proposed by Conn et al. (2009a), as a deresatde TR method that allows
for arbitrary models and does not impose interpolatiohésdfore particularly appealing. We
will therefore integrate our metamodel within this framekwo

3 METHOD

In this section, we first describe the main ideas of the ogtton algorithm that will be used.
We then present the metamodel.

3.1 Algorithmic framework

For an introduction to trust region (TR) methods, we referrdader to Conn et al. (2000). They
summarize the main steps of a TR method inBlasic trust region algorithmThe method pro-
posed by Conn et al. (2009a) builds upon Besic TR algorithmby adding two additional
steps: a model improvement step and a criticality step. Weqmt the main steps of the algo-
rithm. For a detailed description see Conn et al. (2009a)ivArgiterationk of the algorithm
considers a metamodei,, an iterater, and a TR radiug\,. Each iteration consists of 5 steps:

e Criticality step. This step may modifyn, andA, if the measure of stationarity is close
to zero.

e Step calculation. Approximately solve the TR subproblem to yield a trial point

e Acceptance of the trial point. The actual reduction of the objective function is compared
to the reduction predicted by the model, this determineghdrehe trial point is accepted
or rejected.

e Model improvement. Either certify thatm, is fully linear in the TR or carry out im-
provement steps.
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e TR radius update.

3.2 Metamodel

The metamodel combines information from two models: a sathwh model and an analytical
gueueing model. We first present these two models, we themide$ow they are combined.

Simulation model. We use a calibrated microscopic traffic simulation modehefitausanne
city center. A detailed description of this model is giverbmmont and Bert (2006). Itis
implemented with the AIMSUN simulator TSS, 2008. It contaantotal of 652 roads and
231 intersections, 49 of which are signalized. For a giversilen vectorz the simulator
provides a realization of the random varialfle:, z, p, €).

Analytical queueing model. This model resorts téinite capacity queueing theotg capture
the key traffic dynamics and the underlying network strust@.g. how upstream and
downstream queues interact, how this interaction is linkedetwork congestion. The
model consists of a system of nonlinear equations. It is tdawed based on a set of ex-
ogenous parametefshat capture the network topology, the total demand, asasgdihe
turning probabilities. A set of endogenous variabjefescribe the traffic dynamics, e.g.
spillback probabilities, the average rates at which alspdk diffuses, queue length sta-
tionary distributions. For a given decision vectahe network model yields the objective
functionT'(z,y, ).

A detailed description of the queueing model and a case studyrating how the en-

dogenous variables describe the formation and diffusiaoafestion is given in Osorio
and Bierlaire (2009a). Its formulation for an urban roadvoek appears in Osorio and
Bierlaire (2009b). It has been successfully used to solvweed{time traffic signal control

problem in Osorio and Bierlaire (2009b).

We recall here the notation that we have introduced so far:

decision vector,

estimate of the objective function derived by the queueinglah
simulation response;

endogenous queueing model variables;

exogenous queueing model parameters;

endogenous simulation variabjes

exogenous simulation parameters

random component of the simulation response.

"™ N DR N R
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We now describe how and7" are combined to derive the metamodel The functional
form of m is:

m(x,y,0,a,8) = aT(z,y,0) + ¢(x, 3),

whereg is a quadratic polynomiady and are parameters of the metamodel. The polynomial
is quadratic with diagonal second derivative matrix. Thisice is based on existing numerical
experiments for derivative-free TR methods which show thay are often more efficient than
full quadratic models Powell, 2003.

d d
6(x,8) = Po+ Y Biwi + Y Bprja,
j=1 j=1

whered is the dimension of,, andz; is thej* component of:.
At a given iteratiork of the algorithm (described in Section 3.1), the parametensda of
the metamodel are fitted using the current sample by soliadgast squares problem:

Nk
min (wis(f (2", 2", p, €) —m(z", 9", 0, a, B)))?,
i=1
wherez’ represents thé” point in the sample, with the corresponding simulated olzdizm
f(a', 2, p, €), ny, is the sample size and,, is the weight associated to ti#& observation at
iterationk.

The weights capture the importance of each point with regodhe current iterate. The
work of Atkeson et al. (1997) gives a survey of weight funei@nd analyzes their theoretical
properties. We use what is known as ihgerse distanceveight function, along with the
Euclidean distance, this leads to the following weight paaters:

1
Lok =3

Wi

The weight of a given point is therefore inversely proparéibto its distance from the current
iterate. This will allow us to approximately have a Taylgpé¢ behavior, where local points
have more weight.

The least squares problem is solved using the Matlab rolgop@onlin The Mathworks,
2008.
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4 OPTIMIZATION PROBLEM

4.1 Traffic signal control

We illustrate the use of this framework with a signal conpablem for a subnetwork of the
city of Lausanne. A review of the different formulations,vaesll as the definitions of the traf-
fic signal terms used hereafter, is given in Appendix A of @sand Bierlaire (2009b). We
consider a fixed-time signal control problem where the tdiséhe cycle times and the all-red
durations are fixed. The stage structure is also given. laratlords, the set of lanes associated
with each stage as well as the sequence of stages are botmkiiowormulate this problem
we use the following notation:

b; available cycle ratio of intersectian
x(p) green split of phasg;

xr vector of minimal green spliis

7 set of intersection indices

Pz(i) set of phase indices of intersection

The problem is traditionally formulated as follows:

min E[f(z, z,p, €)] (1)
subject to
> alp)=b,Viel 0
pEPL(i)
T > . (3)

In this problem the decision vectarconsists of the green splits for each phase. The objective
is to minimize the expected travel time (Equation (1)). Tinedr constraints (2) link the green
times of the phases with the available cycle time for eacérsgiction. The bounds (3) corre-
spond to minimal green time values for each phase. Thesedegreset to 4 seconds according
to the Swiss transportation norm VSS, 1992.

4.2 TR subproblem

At a given iterationk the TR subproblem includes three more constraints than rénaqus
problem. It is formulated as follows:
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Hxllyn mk(xuyu‘gaoékuﬁk> (4)

subject to
> alp)=b,Viel (5)
pEPr(4)
U(z,y,0) =0 (6)
|z — zill2 < Ay (7)
y >0 (8)
T >z, 9)

wherexy, is the current iterate anddenotes the queueing model. Equation (6) consists of the
system of nonlinear equations that define the queueing mtigetorresponding endogenous
variables are subject to positivity constraints (Equai(®)). This system is given explicitly
and detailed in Osorio and Bierlaire (2009b) (Equations (B)) and (12) of that paper). The
analytical form of7" is also detailed in Section 4 of that paper. Constraint (IhésTR con-
straint. It uses the Euclidean norm Conn et al., 2009a. Thes'R subproblem consists of

a nonlinear objective function subject to nonlinear anddinequalities, a nonlinear inequality
and bound constraints. This problem is solved with the Nbatbautine for constrained nonlinear
problemsfmincon which resorts to a sequential quadratic programming nte@aeman and

Li, 1996; Coleman and Li, 1994.

5 |IMPLEMENTATION NOTES

Constraints As detailed by Conn et al. (2009b), DF TR methods are a relgtiecent topic.
The algorithms developed so far are derived based on sowadetiical properties that
lead to a solid global convergence theory, but they are mdstmulated for uncon-
strained problems. Unfortunately, the optimization peoh$ encountered in practice are
rarely unconstrained. Conn et al. (2009b) reviews comstthDF algorithms, and con-
firms that for constrained problems “currently, there is aovergence theory developed
for TR interpolation-based methods”, not to mention TR rodththat allow for regres-
sion models. Conn et al. (1998) extends the use of a TR metrattonstrained prob-
lems to problems with general constraints. The traffic manant problems that we are
interested in solving fall into the category of what they oenaseasyconstraints. These
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are general constraints that are continuously differblgiand whos first order partial
derivatives can be computed relatively cheaply (with rdgdo the cost of evaluating the
objective function). In their approach they include suchstaaints in the TR subproblem,
which ensures that all trial points are feasible. Conn g28l09b) mention that such an
approach is often sufficient in practice. Here we use the atgpihhoposed by Conn et al.
(2009a) for unconstrained methods, and extend its use &treamed problems as Conn
et al. (1998) propose.

Limited computational budget The main motivation to go beyond a pure quadratic surrogate
is to improve the short term performance of a given DF alaritsince near convergence
a quadratic will asymptotically provide an adequate apipnaexion for a second-order
Taylor series model. Recently, the importance of evalggatie short-term behavior of
DF algorithms has been emphasized by Moré and Wild (2009 hiatig et al. (2009).
Furthermore, DF applications often involve a limited cogbonal budget. In many
practical situations an improved solution rather than alloptimum may be all that is
required or that can be computed for a given budget Zhang, &0419. We will therefore
focus on the performance of this approach given a fixed aind ¢igmputational budget.

Criticality step Since we are interested in the short term behavior of thiscgmh, the theo-
retical considerations needed to ensure global conveegarecnot our main focus. We
assume that the limited resources are not sufficient to appran optimal point, i.e. the
measure of stationarity will not go under a given thresholthus we do not consider
the criticality step of the original algorithm. We assummotighout that the model is not
certifiably fully linear(which is required when approaching a stationary point abttie
stationary measure of the model can be trusted). If at a gigeation, the measure of sta-
tionarity does go under this threshold then a purely quadna¢tamodel can be used (so
that within a finite number of steps we can ensure that it \atils§y Taylor-type bounds).

Model improvement step At each iteration we obtain one observation of the simulatgdc-
tive function (associated to the trial point), no furtheproavement steps are carried out.
In order to improve the performance of the algorithm, dif@ation sampling should be
carried out. Determining when and how this diversificatibadd take place is currently
being studied.

TR radius update There are 2 cases where the TR radius is reduced in the algor(tl) if
it is known that the model ifully linear, but it has over-predicted the reduction in the
objective function; (2) when approaching a stationary p(o that the model becomes
more accurate and the stationary measure can be trusteate Be assume throughout
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that the model is natertifiably fully linearand we focus on the short-term performance
of the algorithm, the TR radius is never reduced in this im@atation.

Initial sample Since our focus is on problems with a limited and tight comapiahal budget,
we assume that there are no initial observations availablthough the least squares
routine used allows for underdetermined systems, whichumcase occur when the di-
mension of the sampled space is smaller than the numberaieders to estimatz/+2,
we use augmented data to make the least-squares matrix irilkl These artificial ob-
servations are chosen so that the parameters are neariahvadile (chosen as zero) and
are attributed a small weight({2).

Algorithmic parameters The following values are used for the parameters of the TRR-alg
rithm: Ay = 103, A ez = 101°, 191 = 1073, v;,,. = 1.2. Typical values for TR parameters
are given in Carter (1986). For the algorithm used to sole€ltR subproblem we set the
tolerance for relative change in the objective functioio® and the constraint tolerance
to 10-2. We limit the computational budget to 50 iterations, and asandom feasible
point as the initial point.

6 EMPIRICAL ANALYSIS

We now evaluate the performance of the proposed method lsidemnng a subnetwork of the
Lausanne city center. The subnetwork (Figure 1) contain®d8s and 15 intersections. Nine
intersections are signalized and control the flow of 30 rodtiere are a total of 51 phases that
are considered variable. The intersections have a cycke dgiineither 90 or 100 seconds. The
considered demand scenario consists of the evening pemd{é7h-18h). Within this time
period congestion gradually increases.

The queueing model of this subnetwork consists of 102 quelies TR subproblem con-
sists of 621 endogenous variables with their corresponidiwgr bound constraints, 408 non-
linear equality constraints, 171 linear equality consitaand 1 nonlinear inequality constraint.

For a given computational budget, our method yields anroglisignal plan for the subnet-
work. We then use the simulation model to evaluate the effetttis signal plan upon the entire
Lausanne network. We run 100 replications to evaluate tinfoymeance of these 'optimal’
plans. Each replication is preceded by a 15 minute warm-tpghe

We compare the performance of the plans derived by this rdethih that of an existing
signal plan for the city of Lausanne. For more information@@rning this existing control plan
we refer the reader to Dumont and Bert (2006). It is quite diehge to compare to this existing
plan, since its a coordinated plan (i.e. green waves exigt@main arterials).
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Figure 1. Subnetwork of the Lausanne city center

Figure 2 displays the empirical cumulative distributiondtion (cdf) of the average travel
times across the 100 replications for four signal plans. theethin solid lines correspond to the
‘optimal’ plans derived by the proposed method, the thididdme corresponds to the existing
plan, and the two dotted lines correspond to the randonalmtans. The plans derived based
on the first initial plan are labeled on the figureagas The labeled cdf’s show that starting off
from a poorly performing initial point, our model leads to lapwith very good performance.
The other initial point has a performance similar to thathaf éxisting plan. Our method still
yields improvement.

By comparing the performance of the plans derived by thegseg@ method to that of the
existing plan, these preliminary results illustrate thelexlvalue of our approach. With no
initial sample, and a tight computational budget, our méttsoable to identify signal plans
that improve the distribution of the average travel timertkermore, although the optimization
problem considers but a subnetwork of roads, the distobus improved at a network-wide
scale.

We have also run the algorithm using a purely quadratic medssi Nevertheless, as men-
tioned in Section 5 the algorithm is initialized with no iaitsample and a diversification strat-
egy has not yet been integrated. Thus the method based omlsgt guadratic model does not
search at all the feasible space, and yields as ‘optimatitpahne initial random points. Without
a diversification strategy comparing these two metamodéhoas directly is of little interest.
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Figure 2: Empirical cumulative distribution function oktlaverage travel time
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7 CONCLUSION

This paper presents a simulation optimization frameworkti@ management of congested
networks. It proposes a metamodel that combines informé&toon a traffic simulation tool and
an analytical network model. It integrates this metamod#iiw a derivative-free trust region
optimization algorithm. The framework is illustrated byl\ang a fixed-time signal control
problem for a subnetwork of the Lausanne city center. Thiopmance of the derived plans is
compared to that of an existing plan for the city of Lausamkthough the method is run with
no initial sample and a tight computational budget, it desiwell performing signal plans.
These are preliminary results, but they indicate that thpg@ach may be suitable for high
dimensional problems (more than 100 variables) that wotliéravise require a large sample
size to initially fit the metamodel of interest. Efficientlyakling constrained high dimensional
problems is one of the main limitations of existing DF methio@he main component of this
methodology that we are currently working on, is the defamitof a diversification sampling
strategy, that would refine the model improvement step ofallgerithm. Furthermore, the
sensitivity of the method to the numerous algorithmic pagtars needs to be evaluated.
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