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Abstract

Microscopic simulators embed numerous traffic models that make them detailed and
realistic tools appropriate to perform scenario-based or sensitivity analysis. This realism
leads to nonlinear objective functions with no available closed form and containing poten-
tially several local minima. As nonlinear, stochastic and evaluation-expensive models, their
integration within an optimization framework remains a difficult and challenging task. We
believe that in order to perform both fast and reliable simulation optimization for congested
networks, information from the simulation tool should be combined with information from
a network model that analytically captures the structure ofthe underlying problem.

This paper presents a surrogate that combines the information from a calibrated mi-
croscopic traffic simulation model of the Lausanne city center (Dumont and Bert, 2006),
with an analytical queueing network model (Osorio and Bierlaire, 2009a) that resorts to
finite capacity queueing theoryto capture the key traffic dynamics and the underlying net-
work structure, e.g. how upstream and downstream queues interact, how this interaction is
linked to network congestion. This network model, which consists of a system of nonlinear
equations, has been successfully used in past work to a solvetraffic signal control problem
(Osorio and Bierlaire, 2009b).

We integrate this surrogate within a derivative-free (DF) trust region optimization frame-
work (Conn et al., 2009a). Resorting to a DF algorithm is particularly appropriate for noisy
problems where the derivatives are difficult to obtain and often unreliable. This is also the
case when the evaluation of the objective function is computationally expensive, or when
the simulation source code is unavailable. In the field of transportation, the simulators
typically fall into all three of these categories.

The framework is illustrated by solving a fixed-time signal control problem for a sub-
network of the Lausanne city center. The performance of the derived plans is compared to
that of an existing plan for the city of Lausanne.

1 INTRODUCTION

Deriving optimal traffic management schemes for urban road networks typically relies on the
use of microscopic simulation tools that capture in detail the behavior of drivers as well as
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their interaction with the network infrastructure. These simulation tools can provide accurate
network performance estimates in the context of scenario-based analysis or sensitivity analysis.
Nevertheless, their integration within an optimization framework remains an intricate process.
A given traffic management scheme can be formulated as:

min
x,z∈Ω

E[f(x, z, p, ǫ)],

where the objective is to minimize the expected value of a suitable network performance mea-
suref . This performance measure is a function of a decision or control vectorx, endogenous
variablesz, exogenous parametersp and a random componentǫ. The feasible spaceΩ consists
of a set of constraints that linkx to z, p andf . For instance, a traffic signal control problem
can takef as the travel time andx as the green splits for the signalized lanes. Elements such
as the total demand or the network topology will be captured by p, while the distribution of the
demand (route choice decisions) and the capacities of the signalized lanes will be captured by
z. The random componentǫ describes the noise associated with a given realization off .

The various traffic models embedded within the simulator make it a detailed and realistic
model, but lead to nonlinear objective functions with no available closed form, and containing
potentially several local minima. Since these are stochastic models, we can only derive es-
timates ofE[f ]. Additionally, computing these estimates is computationally expensive, since
they involve running numerous replications. As a nonlinearstochastic and evaluation-expensive
problem, it is complex to address.

We believe that in order to perform both fast and reliable simulation optimization for con-
gested networks, information from the simulation tool should be combined with information
from a surrogate network model that analytically captures the structure of the underlying prob-
lem. In this paper, we propose such a surrogate. First, we present a literature review of
surrogate-based SO methods (Section 2). In Section 3 we present the optimization framework
and the surrogate model. We then show how this method appliesto a fixed-time traffic sig-
nal optimization problem (Section 4). We comment on implementation issues (Section 5) and
present empirical results in Section 6.

2 L ITERATURE REVIEW

Barton and Meckesheimer (2006) provide a classification anda review of simulation-optimization
methods. Continuous SO problems fall into two categories: direct gradient and metamodel
methods. Direct gradient methods estimate the gradient of the simulation response, and then re-
sort to stochastic gradient-based techniques such as stochastic approximation Spall, 2003. The
simulation function’s gradient can be estimated with direct methods (e.g. perturbation analy-
sis), which require knowledge of the underlying probabilistic process (e.g. input probability
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distributions). In particular, automatic differentiation methods allow the exact evaluation of
gradients but require the source code of the simulation model to be available (see Conn et al.
(2000) and references herein). The gradient can also be estimated with indirect methods, which
use only function evaluations (e.g. finite difference, simultaneous perturbation Spall, 2003).
Although there have been significant advances and novel approaches for gradient estimation Fu
et al., 2005; Fu, 2006, methods that rely on direct derivative information often require more
function evaluations, and their convergence is sensitive to the accuracy of the gradient estima-
tion.

Metamodel methods use an indirect-gradient approach by computing the gradient of a sur-
rogate model (or metamodel), which is a deterministic function, instead of the gradient of the
simulation response. The main advantage of a metamodeling approach is that the stochastic
response of the simulation is replaced by a deterministic metamodel response function, then
deterministic optimization techniques can be used. Metamodels are often a linear combination
of basis functions from a parametric family. The most commonapproach is the use of low-
order polynomials (e.g. linear or quadratic). Spline models have also been used, although their
use within an SO framework has focused on univariate or bivariate functions, and as Barton
and Meckesheimer (2006) mention: “unfortunately, the mostpopular and effective multivariate
spline methods are based on interpolating splines, which have little applicability for SO”. Radial
basis functions have also been proposed Oeuvray and Bierlaire, 2009. The existing metamodel
methods fix apriori a functional form for the metamodel (e.g.quadratic). The functional forms
considered are general-purpose forms, that are chosen based on their analytical tractability, but
do not take into account any information with regards to the specific objective function, let
alone the structure of the underlying problem.

In this paper, we use a metamodel method to perform SO. The metamodel of interest com-
bines information from the simulator and from an analyticalnetwork model. For a given prob-
lem, the analytical model will yield a different functionalform for the objective function. The
metamodel proposed in this paper goes beyond existing metamodel approaches since the func-
tional form is problem specific. This comes at the cost of deriving a framework that is particu-
larly suited for network optimization but not intended for arbitrary optimization problems.

In order to integrate the proposed metamodel within an existing optimization method, we
review the algorithms that allow for an arbitrary metamodel. These methods are called multi-
model or hybrid methods. They share a common motivation, which is to combine the use of
models with varying evaluation costs (low versus high-fidelity models, or coarse versus fine
models).

A trust-region optimization framework for unconstrained problems allowing for multiple
models was proposed by Carter (1986) (see references hereinfor previous multi-model frame-
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works). His work analyses the theoretical properties and derives a global convergence theory
for several types of multi-model algorithms. It allows for nonquadratic models as long as at
least one model is a standard quadratic with uniformly bounded curvature.

The Approximation and Model Management Optimization/Framework (AMMO or AMMF)
is a trust-region framework for generating and managing a sequence of metamodels. There
are several versions of the algorithm: for unconstrained problems Alexandrov et al., 1998,
bound constrained Alexandrov et al., 2000, inequality constrained Alexandrov et al., 1999,
generally constrained Alexandrov et al., 2001. Although norestrictions are imposed on the type
of surrogates allowed, it is a first-order method that requires that the model and the objective
function, as well as their first-order derivatives, coincide at each major (or accepted) iterate.
Thus the metamodel must always behave as a first-order Taylorseries approximation. This is a
strong restriction if the function is noisy and expensive toevaluate.

The Surrogate-Management framework (SMF) proposed by Booker et al. (1999) is a derivative-
free method for bound constrained problems. It is based on a direct search technique called pat-
tern search. Since direct search techniques typically require many function evaluations, they use
a surrogate model of the objective function to improve the performance of the algorithm. The
surrogate model used is an interpolated kriging model. Nevertheless, interpolation techniques
are inappropriate for noisy responses.

The Space Mapping (SM) technique and its many versions Bandler et al., 2006; Bandler
et al., 2004 is a simulation-based optimization technique that uses two metamodels: a fine and a
coarse model. Both models are often simulation-based. The coarse model is constructed based
on a transformation of the endogenous variables (“space mapping”) that minimizes the error
for a sampled set of high-fidelity response values. Nevertheless, SM relies on the assumption
that via a transformation of the endogenous variables the coarse model will exhibit the physi-
cal/mathematical properties of the fine model Alexandrov and Lewis, 2001 and as Bandler et al.
(2004) mention “the required interaction between coarse model, fine model, and optimization
tools makes SM difficult to automate within existing simulators”. Alexandrov and Lewis (2001)
give a comparison of the AMMO, the SMF and the SM methods.

Conn et al. (2009a) recently proposed a trust-region derivative-free framework for uncon-
strained problems. This framework allows for arbitrary metamodels and makes no assumption
on how these metamodels are fitted (interpolation or regression). To ensure global convergence
a model improvement algorithm guarantees that the models achieve a uniform local behavior
(i.e. satisfy Taylor-type bounds) within a finite number of steps.

Derivative-free (DF) methods do not require nor do they explicitly approximate derivatives.
Resorting to a DF algorithm, rather than to first or second order algorithms, is therefore appro-
priate for noisy problems where the derivatives are difficult to obtain and often unreliable. This
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is also the case when the evaluation of the objective function is computationally expensive, or
when the simulation source code is unavailable, the simulator must then be treated as a black
box Moré and Wild, 2009. In the field of transportation, the simulators fall into all three of these
categories. Thus we will opt for a DF approach.

Among the two main strategies used to ensure global convergence, line search and trust
region methods, the latter are more appropriate for our context since they “extend more naturally
than line search methods to models that are not quadratics with positive Hessians” Carter, 1986.
Additionally, the most common approach for fitting metamodels within a TR framework is
interpolation. Nevertheless, for noisy functions we believe that regression is more appropriate
since it is less sensitive to the inaccuracy of the observations.

The framework proposed by Conn et al. (2009a), as a derivative-free TR method that allows
for arbitrary models and does not impose interpolation, is therefore particularly appealing. We
will therefore integrate our metamodel within this framework.

3 METHOD

In this section, we first describe the main ideas of the optimization algorithm that will be used.
We then present the metamodel.

3.1 Algorithmic framework

For an introduction to trust region (TR) methods, we refer the reader to Conn et al. (2000). They
summarize the main steps of a TR method in theBasic trust region algorithm. The method pro-
posed by Conn et al. (2009a) builds upon theBasic TR algorithmby adding two additional
steps: a model improvement step and a criticality step. We present the main steps of the algo-
rithm. For a detailed description see Conn et al. (2009a). A given iterationk of the algorithm
considers a metamodelmk, an iteratexk and a TR radius∆k. Each iteration consists of 5 steps:

• Criticality step. This step may modifymk and∆k if the measure of stationarity is close
to zero.

• Step calculation.Approximately solve the TR subproblem to yield a trial point.

• Acceptance of the trial point. The actual reduction of the objective function is compared
to the reduction predicted by the model, this determines whether the trial point is accepted
or rejected.

• Model improvement. Either certify thatmk is fully linear in the TR or carry out im-
provement steps.
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• TR radius update.

3.2 Metamodel

The metamodel combines information from two models: a simulation model and an analytical
queueing model. We first present these two models, we then describe how they are combined.

Simulation model. We use a calibrated microscopic traffic simulation model of the Lausanne
city center. A detailed description of this model is given inDumont and Bert (2006). It is
implemented with the AIMSUN simulator TSS, 2008. It contains a total of 652 roads and
231 intersections, 49 of which are signalized. For a given decision vectorx the simulator
provides a realization of the random variablef(x, z, p, ǫ).

Analytical queueing model. This model resorts tofinite capacity queueing theoryto capture
the key traffic dynamics and the underlying network structure, e.g. how upstream and
downstream queues interact, how this interaction is linkedto network congestion. The
model consists of a system of nonlinear equations. It is formulated based on a set of ex-
ogenous parametersθ that capture the network topology, the total demand, as wellas the
turning probabilities. A set of endogenous variablesy describe the traffic dynamics, e.g.
spillback probabilities, the average rates at which a spillback diffuses, queue length sta-
tionary distributions. For a given decision vectorx the network model yields the objective
functionT (x, y, θ).

A detailed description of the queueing model and a case studyillustrating how the en-
dogenous variables describe the formation and diffusion ofcongestion is given in Osorio
and Bierlaire (2009a). Its formulation for an urban road network appears in Osorio and
Bierlaire (2009b). It has been successfully used to solve a fixed-time traffic signal control
problem in Osorio and Bierlaire (2009b).

We recall here the notation that we have introduced so far:

x decision vector;
T estimate of the objective function derived by the queueing model;
f simulation response;
y endogenous queueing model variables;
θ exogenous queueing model parameters;
z endogenous simulation variables;
p exogenous simulation parameters;
ǫ random component of the simulation response.
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We now describe howf andT are combined to derive the metamodelm. The functional
form of m is:

m(x, y, θ, α, β) = αT (x, y, θ) + φ(x, β),

whereφ is a quadratic polynomial,α andβ are parameters of the metamodel. The polynomialφ

is quadratic with diagonal second derivative matrix. This choice is based on existing numerical
experiments for derivative-free TR methods which show thatthey are often more efficient than
full quadratic models Powell, 2003.

φ(x, β) = β0 +

d∑

j=1

βjxj +

d∑

j=1

βp+jx
2
j ,

whered is the dimension ofx, andxj is thejth component ofx.
At a given iterationk of the algorithm (described in Section 3.1), the parametersβ andα of

the metamodel are fitted using the current sample by solving the least squares problem:

min
α,β

nk∑

i=1

(wki(f̂(xi, zi, p, ǫi) − m(xi, yi, θ, α, β)))2,

wherexi represents theith point in the sample, with the corresponding simulated observation
f̂(xi, zi, p, ǫi), nk is the sample size andwki is the weight associated to theith observation at
iterationk.

The weights capture the importance of each point with regards to the current iterate. The
work of Atkeson et al. (1997) gives a survey of weight functions and analyzes their theoretical
properties. We use what is known as theinverse distanceweight function, along with the
Euclidean distance, this leads to the following weight parameters:

wki =
1

1 + ‖xk − xi‖2
2

The weight of a given point is therefore inversely proportional to its distance from the current
iterate. This will allow us to approximately have a Taylor-type behavior, where local points
have more weight.

The least squares problem is solved using the Matlab routinelsqnonlinThe Mathworks,
2008.
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4 OPTIMIZATION PROBLEM

4.1 Traffic signal control

We illustrate the use of this framework with a signal controlproblem for a subnetwork of the
city of Lausanne. A review of the different formulations, aswell as the definitions of the traf-
fic signal terms used hereafter, is given in Appendix A of Osorio and Bierlaire (2009b). We
consider a fixed-time signal control problem where the offsets, the cycle times and the all-red
durations are fixed. The stage structure is also given. In other words, the set of lanes associated
with each stage as well as the sequence of stages are both known. To formulate this problem
we use the following notation:

bi available cycle ratio of intersectioni;
x(p) green split of phasep;
xL vector of minimal green splits;
I set of intersection indices;
PI(i) set of phase indices of intersectioni.

The problem is traditionally formulated as follows:

min
x,z

E[f(x, z, p, ǫ)] (1)

subject to

∑

p∈PI(i)

x(p) = bi, ∀i ∈ I (2)

x ≥ xL. (3)

In this problem the decision vectorx consists of the green splits for each phase. The objective
is to minimize the expected travel time (Equation (1)). The linear constraints (2) link the green
times of the phases with the available cycle time for each intersection. The bounds (3) corre-
spond to minimal green time values for each phase. These havebeen set to 4 seconds according
to the Swiss transportation norm VSS, 1992.

4.2 TR subproblem

At a given iterationk the TR subproblem includes three more constraints than the previous
problem. It is formulated as follows:
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min
x,y

mk(x, y, θ, αk, βk) (4)

subject to

∑

p∈PI(i)

x(p) = bi, ∀i ∈ I (5)

ℓ(x, y, θ) = 0 (6)

‖x − xk‖2 ≤ ∆k (7)

y ≥ 0 (8)

x ≥ xL, (9)

wherexk is the current iterate andℓ denotes the queueing model. Equation (6) consists of the
system of nonlinear equations that define the queueing model, the corresponding endogenous
variables are subject to positivity constraints (Equation(8)). This system is given explicitly
and detailed in Osorio and Bierlaire (2009b) (Equations (9), (10) and (12) of that paper). The
analytical form ofT is also detailed in Section 4 of that paper. Constraint (7) isthe TR con-
straint. It uses the Euclidean norm Conn et al., 2009a. Thus the TR subproblem consists of
a nonlinear objective function subject to nonlinear and linear equalities, a nonlinear inequality
and bound constraints. This problem is solved with the Matlab routine for constrained nonlinear
problems,fmincon, which resorts to a sequential quadratic programming method Coleman and
Li, 1996; Coleman and Li, 1994.

5 IMPLEMENTATION NOTES

Constraints As detailed by Conn et al. (2009b), DF TR methods are a relatively recent topic.
The algorithms developed so far are derived based on sound theoretical properties that
lead to a solid global convergence theory, but they are mostly formulated for uncon-
strained problems. Unfortunately, the optimization problems encountered in practice are
rarely unconstrained. Conn et al. (2009b) reviews constrained DF algorithms, and con-
firms that for constrained problems “currently, there is no convergence theory developed
for TR interpolation-based methods”, not to mention TR methods that allow for regres-
sion models. Conn et al. (1998) extends the use of a TR method for unconstrained prob-
lems to problems with general constraints. The traffic management problems that we are
interested in solving fall into the category of what they denote aseasyconstraints. These
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are general constraints that are continuously differentiable and whos first order partial
derivatives can be computed relatively cheaply (with regards to the cost of evaluating the
objective function). In their approach they include such constraints in the TR subproblem,
which ensures that all trial points are feasible. Conn et al.(2009b) mention that such an
approach is often sufficient in practice. Here we use the method proposed by Conn et al.
(2009a) for unconstrained methods, and extend its use to constrained problems as Conn
et al. (1998) propose.

Limited computational budget The main motivation to go beyond a pure quadratic surrogate
is to improve the short term performance of a given DF algorithm, since near convergence
a quadratic will asymptotically provide an adequate approximation for a second-order
Taylor series model. Recently, the importance of evaluating the short-term behavior of
DF algorithms has been emphasized by Moré and Wild (2009) andZhang et al. (2009).
Furthermore, DF applications often involve a limited computational budget. In many
practical situations an improved solution rather than a local optimum may be all that is
required or that can be computed for a given budget Zhang et al., 2009. We will therefore
focus on the performance of this approach given a fixed and tight computational budget.

Criticality step Since we are interested in the short term behavior of this approach, the theo-
retical considerations needed to ensure global convergence are not our main focus. We
assume that the limited resources are not sufficient to approach an optimal point, i.e. the
measure of stationarity will not go under a given threshold.Thus we do not consider
the criticality step of the original algorithm. We assume throughout that the model is not
certifiably fully linear(which is required when approaching a stationary point so that the
stationary measure of the model can be trusted). If at a giveniteration, the measure of sta-
tionarity does go under this threshold then a purely quadratic metamodel can be used (so
that within a finite number of steps we can ensure that it will satisfy Taylor-type bounds).

Model improvement step At each iteration we obtain one observation of the simulatedobjec-
tive function (associated to the trial point), no further improvement steps are carried out.
In order to improve the performance of the algorithm, diversification sampling should be
carried out. Determining when and how this diversification should take place is currently
being studied.

TR radius update There are 2 cases where the TR radius is reduced in the algorithm: (1) if
it is known that the model isfully linear, but it has over-predicted the reduction in the
objective function; (2) when approaching a stationary point (so that the model becomes
more accurate and the stationary measure can be trusted). Since we assume throughout
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that the model is notcertifiably fully linearand we focus on the short-term performance
of the algorithm, the TR radius is never reduced in this implementation.

Initial sample Since our focus is on problems with a limited and tight computational budget,
we assume that there are no initial observations available.Although the least squares
routine used allows for underdetermined systems, which in our case occur when the di-
mension of the sampled space is smaller than the number of parameters to estimate2d+2,
we use augmented data to make the least-squares matrix of full rank. These artificial ob-
servations are chosen so that the parameters are near an initial value (chosen as zero) and
are attributed a small weight (10−2).

Algorithmic parameters The following values are used for the parameters of the TR algo-
rithm: ∆0 = 103, ∆max = 1010, η1 = 10−3, γinc = 1.2. Typical values for TR parameters
are given in Carter (1986). For the algorithm used to solve the TR subproblem we set the
tolerance for relative change in the objective function to10−3 and the constraint tolerance
to 10−2. We limit the computational budget to 50 iterations, and usea random feasible
point as the initial point.

6 EMPIRICAL ANALYSIS

We now evaluate the performance of the proposed method by considering a subnetwork of the
Lausanne city center. The subnetwork (Figure 1) contains 48roads and 15 intersections. Nine
intersections are signalized and control the flow of 30 roads. There are a total of 51 phases that
are considered variable. The intersections have a cycle time of either 90 or 100 seconds. The
considered demand scenario consists of the evening peak period (17h-18h). Within this time
period congestion gradually increases.

The queueing model of this subnetwork consists of 102 queues. The TR subproblem con-
sists of 621 endogenous variables with their correspondinglower bound constraints, 408 non-
linear equality constraints, 171 linear equality constraints and 1 nonlinear inequality constraint.

For a given computational budget, our method yields an ’optimal’ signal plan for the subnet-
work. We then use the simulation model to evaluate the effectof this signal plan upon the entire
Lausanne network. We run 100 replications to evaluate the performance of these ’optimal’
plans. Each replication is preceded by a 15 minute warm-up period.

We compare the performance of the plans derived by this method with that of an existing
signal plan for the city of Lausanne. For more information concerning this existing control plan
we refer the reader to Dumont and Bert (2006). It is quite a challenge to compare to this existing
plan, since its a coordinated plan (i.e. green waves exist onthe main arterials).
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Figure 1: Subnetwork of the Lausanne city center

Figure 2 displays the empirical cumulative distribution function (cdf) of the average travel
times across the 100 replications for four signal plans. Thetwo thin solid lines correspond to the
‘optimal’ plans derived by the proposed method, the thick solid line corresponds to the existing
plan, and the two dotted lines correspond to the random initial plans. The plans derived based
on the first initial plan are labeled on the figure asx1. The labeled cdf’s show that starting off
from a poorly performing initial point, our model leads to a plan with very good performance.
The other initial point has a performance similar to that of the existing plan. Our method still
yields improvement.

By comparing the performance of the plans derived by the proposed method to that of the
existing plan, these preliminary results illustrate the added value of our approach. With no
initial sample, and a tight computational budget, our method is able to identify signal plans
that improve the distribution of the average travel time. Furthermore, although the optimization
problem considers but a subnetwork of roads, the distribution is improved at a network-wide
scale.

We have also run the algorithm using a purely quadratic metamodel. Nevertheless, as men-
tioned in Section 5 the algorithm is initialized with no initial sample and a diversification strat-
egy has not yet been integrated. Thus the method based on a purely quadratic model does not
search at all the feasible space, and yields as ‘optimal’ points the initial random points. Without
a diversification strategy comparing these two metamodel methods directly is of little interest.
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Figure 2: Empirical cumulative distribution function of the average travel time
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7 CONCLUSION

This paper presents a simulation optimization framework for the management of congested
networks. It proposes a metamodel that combines information from a traffic simulation tool and
an analytical network model. It integrates this metamodel within a derivative-free trust region
optimization algorithm. The framework is illustrated by solving a fixed-time signal control
problem for a subnetwork of the Lausanne city center. The performance of the derived plans is
compared to that of an existing plan for the city of Lausanne.Although the method is run with
no initial sample and a tight computational budget, it derives well performing signal plans.

These are preliminary results, but they indicate that this approach may be suitable for high
dimensional problems (more than 100 variables) that would otherwise require a large sample
size to initially fit the metamodel of interest. Efficiently tackling constrained high dimensional
problems is one of the main limitations of existing DF methods. The main component of this
methodology that we are currently working on, is the definition of a diversification sampling
strategy, that would refine the model improvement step of thealgorithm. Furthermore, the
sensitivity of the method to the numerous algorithmic parameters needs to be evaluated.
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