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INTRODUCTION

In forecasting travel demand, a key part are the models predicting the
numbers of trips or tours that travellers will make. It is the output of these
models that forms the input to models of mode, destination etc. choice which
give the detailed demand for travel on specific parts of the transport networks.

Early work on trip generation, as it was called, used methods such as growth
factors, linear regression at zonal or household level, or category analysis at
household or person level (see the presentation by Ortizar and Willumsen,
2011). But these methods, even though they differ from each other, can all be
criticised on three important grounds:

first, they treat trip generation as a mechanical process and do not give any
recognition to the behavioural basis that causes people to travel;

second, by aggregating the data they lose sight of its nature, in that
observations of numbers of trips or tours can take only the values 0, 1, 2 etc.
and not negative or fractional values;

third, again because of aggregation, they lose both statistical efficiency and
insight into the variations across socio-economic dimensions that drive
differences in travel frequency.

These criticisms have led analysts to look instead at ‘travel frequency choice’,
developing models that take explicit account of the behavioural basis of the
choice whether or not to travel and of the ‘count’ nature of the data that is
generated by this process (i.e. non-negative integers).

An approach that takes account of the choice nature of this behaviour was set
out by Daly (1997) and Daly and Miller (2006), introducing the ‘stop-go’ model
and setting it in the context of utility maximisation so that it could be linked
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properly with the models of mode and destination choice etc.. This link is
central, in particular, to the recognition and estimation of the role of
accessibility in determining travel frequency. A different approach, using
negative binomial models that also deal properly with count data, was
introduced by Jahanshahi et al. (2009). These different approaches, together
with others noted by those authors, pose the question of the relationship of
these approaches and their links to behaviour.

A recent paper by Paleti (2016) sets a number of count models in the utility
maximising framework, so that it can be claimed that several count models,
dealing properly with disaggregate data, are consistent with reasonable
models of behaviour. However, not all of the models that can reasonably be
considered are discussed by Paleti, while it is also not clear how accessibility
can be incorporated in all of these models.

In the following section of this paper, we extend the model types beyond those
considered by Paleti, providing mathematical specifications for two general
types of model: those that assume that the entire population can choose
whether or not to travel and then model the number of trips made by those
who do choose to travel; and those that assume that a sub-population is not
able to travel and that the remainder choose how many trips to make.

Section 3 focusses on the different insights given by the different models and
their suitability for forecasting. In particular, we present different parameter
values obtained with different model specifications to predict the trip frequency
for rail travel and discuss the implications of these.

A final section summarises the findings and makes recommendations for work
in practice and further research.

MODEL SPECIFICATIONS

This section provides a comparison between Hurdle type count models
(Mullahy, 1986), such as the stop-go model for trip frequency analysis (Daly,
1997) and zero-inflated count models (more specifically zero-inflated Poisson,
ZIP, and negative binomial models, ZINB); both Hurdle and zero- inflated
count models contain two trip generation processes: binary and count model
components. However, Hurdle models separate the modelling of zeros from
that of counts (i.e. the count model is truncated at 0) while zero-inflated
models predict zero counts from both binary and count processes.
Conceptually, the Hurdle models assume that individuals make a decision on
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whether to make a trip or not and then the number of trips to be made,
conditional on making at least one trip; the zero inflated count models,
however, separate a subset of observations originating from a subpopulation
(or state) that can only have zero trips (known as “structural” zeros); the
remaining zeros come from the count model subpopulation (we call these
“functional zeros”).

Below we provide mathematical specifications for the two model types:

Stop-go hurdle model

The stop-go model (Daly, 1997, gives the model specification and reports on a
number of previous studies using it) first predicts the probability of making a
trip (or not) and then the choice of the number of trips being made conditional
on making at least one trip. As explained in Daly (1997), the first stage (i.e.
probability of making a trip) is predicted by the logit model as:

1 1

Pr(yi > 0) = m or Pr(yi = O) = Trexp(vD) (1)
where v; is the utility function of making one or more trips given by:
Vi = Yo t Y1Zii + =+ YmZmi = Z{G (2)

where Z; is the matrix of explanatory variables (i.e. behavioural components
such as household socioeconomic characteristics etc) and G is the array of
unknown coefficients which need to be estimated.

The next stage involves estimating the number of trips conditional on Pr(y; >
0); the standard stop-go uses a recursive approach to estimate number of
trips: first the choice is made on whether exactly 1 trip or 2 or more trips will
be made; then, given that 2+ trips are to be made, the choice is whether
exactly 2 trips or 3+ trips is to be made, etc.

Assuming Pr(stop) is the probability of stopping at every level (i.e. stop at 1
relative to go for 1+ trips, stop at 2 relative to go for 2+ trips, etc) and is the
same for all levels, the stop-go process becomes a geometric count model.
The probability of making y; trips will be then given by:

Pr(yily; > 0) = Pr(y; > 0) Pr(stop) (1 — Pr(stop))”i~* 3)

where
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1+exp(vgi)

and vyg; is the utility of ‘go’ (i.e. making more trips, relative to ‘stop’ at certain
level) given by:

Vgi = Bo + B1Xqi + -+ + Brxyi = X{B ()

In equations (2) and (5), zj; to z;, are a set of m regressor variables (vector of
Z;) explaining the probability of making one or more trips and x;; to x;, are a
set of k explanatory variables (vector of X;) forming the utility of making more
trips (go) when an individual makes 1 or more trips. Note that the Zs and the
Xs may or may not include terms in common.

Considering exp(vgi) as the expected value (;) in a geometric count model’,
we can also write equation 3 as:

Pr(yily; > 0) = Pr(y; > 0) (=) ()" ©)

1+pi/ \1+y;

where the y’s and B’s are to be estimated by maximising the loglikelihood
function LL;:

n
LLl = Z LLli
i=1

where

1 .
LLli =In (m) if Vi = 0

1 1 1 .
=mn <1+exp(—Zi'G)> +1n <1+exp(X{B)> +Oi-Dln <1+exp(—Xi’B)> ity; >0

(7)

In these models v; and vy; are the utilities of making one or making more trips

than the current number of trips (respectively). Accessibility can be
incorporated in these functions, for example with a logsum from a mode-
destination choice model.

Zero-inflated count models
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The probability distribution of general zero-inflated count models can be
written as:

(1-p1) + (p)glyi = 0), ift=0

(pi)gi), ift>0 (8)

Pr(y =) = {

where p; is the probability of trips being generated from the count model (i.e.
1 — p; Is the probability of structural zeros) given by the logistic formulation
below?:

p;=—— 9)

and g(y;) is the probability distribution function of the count model given by:

Yi

Hi
For ZIP: g(yi) = Pr(Y = yi|w) = I(yi+1) exp(—Hu;) (10)
For ZINB:  g(y;) = Pr(Y = y = "atn) = )é( ay )yi "
0 . g =Pr(Y =yilu, = oo (ram) (Team (11)

where T is the standard ‘gamma’ function.

In equations (8) to (11), A; and y; are the expected (positive) values given by
the exponential linking functions below:

A = exp(Yo + Y1Zii + Y2Zoi + - + YmZmi) = eXp(Zi'G) (12)
Wi = exp(Bo + B1xqi + BaXpi + -+ + PrXki) = exp(X;B) (13)

where z; to z,, are a set of m regressor variables (vector of Z;) explaining the
probability of structural zeros and x, to x, are a set of k explanatory variables
(vector of X;) for the number of trips (including 0) generated by the count
model. The parameters y, B and «, are estimated by maximizing the log
likelihood function (see equation (17) below for the log likelihood function LL,
of ZINB).

ZINB is a more general form of ZIP which relaxes the assumption of the same

. . . 1 .
value for the mean and variance in the Poisson count model®. The term = in

o

equation 11 above is called the dispersion parameter indicating the degree of
difference between the mean and variance in the negative binomial count
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model. Equation 11 collapses to equation 10 for large values of i (i.e. when

a approaches zero).

Also, when a tends to 1, equation 11 can be written as:

gv) = Pr(Y = il = (=) ()" (14)

1+p/ \1+y;

which is the geometric distribution of the number of trips with p; representing
the expected number of trips which is an exponential function of attributes.

As such equation (8) above when o = 1 can be written as:

(1—-p;) +pi (j) ift=20 (a)
Pr(y; = t) = AN (15)
) () ()7, ife>0 (b)

The first part of equation 15a (i.e. 1 —p;) is the probability of generating
structural zeros and the second part of 15a is the probability of making no

0
eO+eeXi’B))' The sum of the two parts

trips in the count model (i.e. (1;_) =(

corresponds to the hurdle type stop-go model where structural and functional
zeros are not separated.

The differences between equation (15b) and equation 6 are:

1. p; in equation (15b) is the probability of generating trips from the count
model (as opposed to the probability of structural zeros) while Pr(y; > 0) in
eqguation (6) is the probability of making at least one trip and as such
Pr(y; > 0) < p;.

2. In equation (6) the count model is truncated at O; hence we have the
exponent y; — 1 when y; starts from 1. Equation (15b), however, can take
zero trips generated from the count model, so we have y; which starts from
0.

The points above can be shown mathematically as:

1. Solving for p; in equation (15a) we obtain:

T
= (1—
pi = (1 —po) (1 n ui)

where, p, is Pr(y; = 0) : the probability of making zero trips (either
structural or functional);
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2. Substituting p; in (15b) would give:

Pr(y; > 0) = (1 - po) () (22) (16)

1+p/ \1+y;

Equation (16) is equivalent to equation (6) which is the probability of making y;
trips when at least one trip is made in the stop-go model. This means that the
standard stop-go model (where the specification and the coefficients in vg;in
equation 5 are the same for each number of trips) is a simplified version of
ZINB with the logistic regression truncated at 0 and with the negative binomial
distribution dispersion parameter fixed to one.

The loglikelihood function of the more general ZINB can be given as:

n
LL2 - z LL21
i=1

n

1 1\ o
LLZi = Z {ln (WZ}(Z{G)) + ln(l + <WP(X{B)) EXp(ZLG)>} lf yi = 0

i=1

n

1 1 1
LLZi = ; {ln (W(—Z{G)) + lnI‘(E + yl) —1In F(yl + 1) - lnI‘(E)
1 1 1 ,
* (E) In <1 +a exp(X{B)) *+yiln <1 1+ aexp(xi'3)> } if Y= 0
(17)

Daly (1997) highlights the necessity of linking the count models to the utility
maximization framework in modelling trip generation. It is already shown that
the probability of zero trips being generated from the count model in ZINB are
given by logistic regression (see equation 9); for the probability distribution
function of the count model (i.e. Negative Binomial model), we are using Paleti
(2016) specifications:

Following Paleti (2016), the negative binomial probability function (i.e.
eguation 11) can be written as:

F(é_i_Yi) ( ol )Yi
N My, +Dr(5) -+ e
o0 = P =l r(z+k) Ty evk
1 A
Ziczo T (1 iu&u-)
rk+1r(5) i
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F(&"'k) ( oW

F(k+D)r(5) \+ap

shown in equation 13.

k
where vk=ln< ) ) and y; is the expected value of count

It can also be shown that the stop-go model (using geometric series
expansion ) can be written as:

o _ B Pr(go)Yi—1 _ Pr(go)¥i~!
Pr(Y =yp) = Prigo)’™*(1 - Pr(go)) = ——7 — =5 i
(1 — Pr(go))
__
- ko €Yk

(20)

k-1
where vi = In (ﬁ) and p; = exp(vg;) (see equation 5).

Again, it can be seen that equation 19 simplifies to equation 20 when a = 1.

Moreover, the way in which terms for accessibility can be incorporated in the
stop-go model can be emulated in the ZINB model (and hence in ZIP).
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CASE STUDY

To gain practical understanding of the influence of analysing methods on
modelling trip frequency, this section compares appliocation of three
altenative models — i.e. stop-go, ZIP, and ZINB. For the case study, we use
the UK National Travel Survey (NTS) data which Patruni et al (2017) have
assembled for analysing rail trip frequency for commuting and business tours.
However, to maintain compatibility, we do not use the full model presented in
Patruni et al., because of its constants for specific numbers of tours, which are
difficult to emulate in the other model types.

We use identical variables for all three alternative models to ensure like with
like comparison. As shown in Section 2, the models are nested and as such
we are able to compare directly their loglikelihood; we also compare more
general goodness of fit measures (AIC for this paper).

Table 1 and Table 2 below present the findings from comparing the three
model forms for commuting and home based business purposes. Panels 1a
and 2a compare the loglikelihood and goodness of fit statistics. The Akaike
Information Criterion (AIC) which is reported here deals with the trade-off
between the goodness of fit and the complexity of the model. Panels 1b and
2b show the influences on the choice of zero tours for stop-go and structural
zero tours for ZIP and ZINB; panels 1c and 2c report the influences on
number of tours made. The last shaded row in each table reports the
dispersion factor which is estimated in the ZINB models.

Table 1 reveals some interesting results. For commuting rail tours — where the
dispersion factor is estimated to be zero — ZIP and ZINB report the same
loglikelihood value, with an AIC which is slightly better for ZIP; the marginal
improvement is due to ZIP having one fewer estimated variable (i.e. the
dispersion factor), which is insignificant in ZINB. This finding is in line with our
expectations; zero dispersion factor reduces ZINB to a ZIP model; and we
note also the identical estimation of coefficients in panel 1b and 1c.

The stop-go model shows weaker fit to the data with systematically over-
estimated influences on trip frequency (see panel 1c).
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Table 1 Comparison of model results across three models for commuting rail
frequency

Stop-Go ZIP ZINB

Panel 1a Goodness of fit statistics

Number of Observations 125,658 125,658 125,658
Log-Likelihood -27,864 -26,945 -26,945
Parameters estimated 24 24 25

AIC 55,777 53,938 53,940

Panel 1b. Influence of socioeconomic profile on the choice of zero

Personal Income -0.021%** -0.021*** -0.021***
Household Income -0.018* -0.018* -0.018*
Number of HH Cars 0.415%** 0.416%** 0.416%**
Company car in the household 0.142** 0.117 0.117

Full driving licence 0.505%** 0.507*** 0.507***
Full time worker -0.767*** -0.704%** -0.704%**
Part time worker -0.378*** -0.378*** -0.378***
year of survey -0.028%** -0.028*** -0.028***
Working in manufacturing sector 0.770*** 0.772*** 0.772%**
Working in wholesale business 0.490%** 0.4971%** 0.4971***
Working in finance sector -0.778%** -0.772%** -0.772%**
Working in health/social care sector 0.58*** 0.58*** 0.58***
Age 0.022%** 0.022%** 0.022%**
No car in HH 0.185%** 0.183%** 0.183%**
People in managerial, professional and

administrative occupations -1.069*** -1.071%** -1.071%**
Intercept 4.16%** 4.,07*** 4.07%**

Panel 1c. Influence of socioeconomic profile on the trip frequency

Full time worker 0.400*** 0.329*** 0.329***
Working in finance sector 0.120** 0.095*** 0.095%**
Age 0.002 0.002 0.002
Company car in the household -0.174** -0.14%** -0.14%**
Age below 25 0.116** 0.101** 0.101**
Age between 26 to 35 0.097*** 0.081*** 0.081***
Intercept 0.35%* 0.749*** 0.749***
Dispersion factor N/A N/A 0.000

*** gignificant at 99% confidence level, ** 95%, * 90%.

For home based business rail tours (Table 2) the dispersion factor is
estimated to be significant and well above 1. Here ZINB shows the best fit to
the data followed by the stop-go model; ZIP has the weakest fit. These results
indicate that the goodness of fit has a direct relationship with the dispersion
factor. Where the data is highly over-dispersed, the stop-go model, which
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assumes a dispersion factor of 1, fits better to the data than ZIP which
assumes a dispersion factor of zero.

The differences across the three model structures are also observable from
panel 2b and 2c which shows bigger variations across the models.

Table 2 Comparison of model results across three models for home-based business
rail frequency

Stop-Go ZIP ZINB

Panel 2a Goodness of fit statistics

Number of Observations

125,658 125,658 125,658

Log-Likelihood -12,243 -12,326 -12,191
Parameters estimated 21 21 22
AIC 24,529 24,695 24,428

Panel 2b. Influence of socioeconomic profile on the choice of zero
Personal Income -0.022%** -0.025*** -0.039***
Male -0.126 0.155 0.309%**
Number of HH Cars 0.174%** 0.187%** 0.244%**
Company car in the household -0.315%** -0.816%** -0.823***
Full driving licence 0.053 0.056 0.078
Full time worker 0.327*** 0.319*** 0.282%**
Part time worker -0.035%** -0.007 -0.005
year of survey 0.430%** 0.464%** 0.608***
Working in manufacturing sector 0.502*** 0.52%** 0.581%**
Working in wholesale sector 0.452%*** 0.481*** 0.606***
Working in construction b sector 0.210** 0.228** 0.295**
Working in health/social care sector -0.393%** -0.443%** -0.65***
Working in real estate sector 0.002 -0.006* -0.004
Age 0.330%** 0.363*** 0.518%***
Full access to car in HH 0.321%** 0.319%** 0.282%**
People in managerial and professional
occupations -1.355%** -1.372%** -1.489%**
Intercept 5.277%** 4,539*** 3.263%**

Panel 2c. Influence of socioeconomic profile on the trip frequency

Male 0.370%** 0.348%*** 0.405***
Time 0.039%** 0.037%*** 0.037%***
Age -0.011%** -0.011%** -0.009%**

Company car in the household -0.668*** -0.557%** -0.384***
Intercept -1.035%** -0.431** -1.795***
Dispersion factor N/A N/A 3.153%%*

*** gignificant at 99% confidence level, ** 95%, * 90%.
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To better understand the scale of differences in practice, we undertook tests
to evaluate the influence of a 10% increase in personal income on the
probability of making business rail tours and the estimated number of tours.
As the reference case, we evaluate a typical full time, managerial and
professional male working in finance sector and facing car competition in their
household (i.e. fewer cars than licence holders). We also consider the sample
average income (i.e. £26.5k p.a.), age (i.e. 41 years old), and number of
household cars (i.e. 1.7) in 2006. The results are shown in Table 3; panel 3a
shows changes in the probability of making tours and panel 3b reports the
percentage change in estimated number of tours as a result of 10% increase
in personal income. It can be observed that in both cases, ZINB is more
elastic than the other two models; ZINB shows 0.24% increase in the
probability of making tours and 8.3% increase in the estimated number of
tours when personal income is increased by 10%. These values are 0.19%
and 5.9% for stop-go and 0.14% and 6.43% for ZIP.
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Table 3Comparison across three models —test of 10% increase in income on business

rail tour-making

Stop-Go ZIP

ZINB

Panel 3a- Changes in probability of making tours for 10%

increase in income

Probability of making no

tours 96.76% 97.89% 97.17%
Probability of making no
tours - after 10%
increase in individual
income 96.57% 97.75% 96.93%
Change in probability -0.19% -0.14% -0.24%

Panel 3b — changes in number of tours for 10% increase in

income

Estimated number of
tours (in year 2008) 0.039 0.026

0.031

Estimated number of
tours after 10% increase
in individual income 0.041 0.027

0.034

%age change in
estimated number of
tours as a result of 10%
increase in income 5.88% 6.43%

8.35%

We further estimate changes in the probability of making no business ralil
tours by individual income ranging from £14k to £90k (see Figure 1). It can be
observed that the differences across the models increase by increase in

income level.
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Figure 1 Changes in probability of making no rail tours by income (business trip)
DISCUSSION AND CONCLUSIONS

This paper is motivated by the existence of different models for the prediction
of the numbers of trips or tours made by individuals or households. The
methods used in early transport planning exercises are rejected as they do
not reflect that trip-making is the result of individual travellers’ choices.
Further, they do not reflect the nature of the data, specifically that the number
of trips are integers, i.e. 0, 1, 2 etc. and not a fractional or negative number.
Nevertheless, there remain several different approaches, including the ‘stop-
go’ model, Poisson regression and negative binomial models, each of which
can use a ‘hurdle’ or ‘zero inflated’ approach to account for the fact that
observations of zero trips are more frequent than would be indicated by
models without these features.

A recent paper by Paleti (2016) sets a number of count models in the utility
maximising framework, which is particularly important because it allows
accessibility to be included in the model as an explanatory variable, coming
out of utility-maximising models of mode and destination choice. Moreover,
setting the models in the utility maximising framework gives a basis for
appraisals using the models, along the lines of Daly and Miller (2006). It is
emphasised that the three models reviewed here fit this criteria.

The contribution of this paper is to make a detailed comparison of three of
these models: the stop-go model (Daly, 1997), zero-inflated Poisson and zero-
inflated negative binomial (Jahanshahi et al., 2009). It is shown analytically
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that zero-inflated Poisson (ZIP) relates closely to the stop-go model, providing

the stop-go model formulation is not adjusted to replicate specific numbers of

trips (e.g. that commuters are likely to go to work 5 times per week). Zero-

inflated negative binomial (ZINB) is a generalisation of ZIP.

Tests of the three models on data previously analysed by Patruni et al. (2017),
but with simplified implementations of the stop-go model to make it more
comparable with ZIP and ZINB, illustrate these findings. On both data sets
ZINB gives the best fit in terms of likelihood, but on commuter data it is no
better than the simpler ZIP. On the commute data stop-go performs less well
than ZIP, but on the business data it performs better, findings which relate to
the distribution of numbers of tours. Specifically, the dispersion factor in ZINB
is effectively constrained to 1 in the stop-go model and to 0 in ZIP; thus when
the true value is closer to one of these extremes, the corresponding simpler
model will perform better.

The elasticity tests and comparisons of predicted number of tours confirm
analytical findings of differences in model outcomes when the distribution of
data is different to that assumed by ZIP and Stop-Go. When the dispersion
factor is larger than 1, ZINB is more elastic to changes in behavioural
parameters

In future work we would recommend that methods be found for modelling in
ZINB and ZIP where specific numbers of trips attract more or less choices
than would be expected. Further, the identification with utility maximisation
should be made closer, so that accessibility can be included and appraisal
can be undertaken. It is our intention to work on these points in the near
future.
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NOTES

! Please note that the distribution of number of trips is completely geometric
(including zeros), if Pr(y=0) = Pr(stop). The standard-go stop specification is
geometric FLEX(0), where FLEX is a notation used by Paleti (2016) to capture
terms pertaining to specific counts.

? It is also possible to use probit regression for estimating the probability of
structural zeros

* See Jahanshahi et al (2009) for more discussion on the difference between
Poisson and negative binomial regressions.
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