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1. INTRODUCTION 

In forecasting travel demand, a key part are the models predicting the 

numbers of trips or tours that travellers will make. It is the output of these 

models that forms the input to models of mode, destination etc. choice which 

give the detailed demand for travel on specific parts of the transport networks. 

Early work on trip generation, as it was called, used methods such as growth 

factors, linear regression at zonal or household level, or category analysis at 

household or person level (see the presentation by Ortúzar and Willumsen, 

2011). But these methods, even though they differ from each other, can all be 

criticised on three important grounds: 

 first, they treat trip generation as a mechanical process and do not give any 

recognition to the behavioural basis that causes people to travel; 

 second, by aggregating the data they lose sight of its nature, in that 

observations of numbers of trips or tours can take only the values 0, 1, 2 etc. 

and not negative or fractional values; 

 third, again because of aggregation, they lose both statistical efficiency and 

insight into the variations across socio-economic dimensions that drive 

differences in travel frequency. 

These criticisms have led analysts to look instead at ‘travel frequency choice’, 

developing models that take explicit account of the behavioural basis of the 

choice whether or not to travel and of the ‘count’ nature of the data that is 

generated by this process (i.e. non-negative integers). 

An approach that takes account of the choice nature of this behaviour was set 

out by Daly (1997) and Daly and Miller (2006), introducing the ‘stop-go’ model 

and setting it in the context of utility maximisation so that it could be linked 
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properly with the models of mode and destination choice etc.. This link is 

central, in particular, to the recognition and estimation of the role of 

accessibility in determining travel frequency. A different approach, using 

negative binomial models that also deal properly with count data, was 

introduced by Jahanshahi et al. (2009). These different approaches, together 

with others noted by those authors, pose the question of the relationship of 

these approaches and their links to behaviour. 

A recent paper by Paleti (2016) sets a number of count models in the utility 

maximising framework, so that it can be claimed that several count models, 

dealing properly with disaggregate data, are consistent with reasonable 

models of behaviour. However, not all of the models that can reasonably be 

considered are discussed by Paleti, while it is also not clear how accessibility 

can be incorporated in all of these models. 

In the following section of this paper, we extend the model types beyond those 

considered by Paleti, providing mathematical specifications for two general 

types of model: those that assume that the entire population can choose 

whether or not to travel and then model the number of trips made by those 

who do choose to travel; and those that assume that a sub-population is not 

able to travel and that the remainder choose how many trips to make.  

Section 3 focusses on the different insights given by the different models and 

their suitability for forecasting. In particular, we present different parameter 

values obtained with different model specifications to predict the trip frequency 

for rail travel and discuss the implications of these. 

A final section summarises the findings and makes recommendations for work 

in practice and further research. 

2. MODEL SPECIFICATIONS 

This section provides a comparison between Hurdle type count models 

(Mullahy, 1986), such as the stop-go model for trip frequency analysis (Daly, 

1997) and zero-inflated count models (more specifically zero-inflated Poisson, 

ZIP, and negative binomial models, ZINB); both Hurdle and zero- inflated 

count models contain two trip generation processes: binary and count model 

components. However, Hurdle models separate the modelling of zeros from 

that of counts (i.e. the count model is truncated at 0) while zero-inflated 

models predict zero counts from both binary and count processes. 

Conceptually, the Hurdle models assume that individuals make a decision on 
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whether to make a trip or not and then the number of trips to be made, 

conditional on making at least one trip; the zero inflated count models, 

however, separate a subset of observations originating from a subpopulation 

(or state) that can only have zero trips (known as “structural” zeros); the 

remaining zeros come from the count model subpopulation (we call these 

“functional zeros”).  

Below we provide mathematical specifications for the two model types: 

2.1 Stop-go hurdle model 

The stop-go model (Daly, 1997, gives the model specification and reports on a 

number of previous studies using it) first predicts the probability of making a 

trip (or not) and then the choice of the number of trips being made conditional 

on making at least one trip. As explained in Daly (1997), the first stage (i.e. 

probability of making a trip) is predicted by the logit model as: 

Pr(yi > 0) =
1

1+exp(−vi)
 or  Pr(yi = 0) =

1

1+exp(vi)
    (1) 

where vi is the utility function of making one or more trips given by: 

vi = γ0 + γ1z1i +⋯+ γmzmi = Zi
′G      (2) 

where Zi is the matrix of explanatory variables (i.e. behavioural components 

such as household socioeconomic characteristics etc) and G is the array of 

unknown coefficients which need to be estimated.  

The next stage involves estimating the number of trips conditional on Pr(yi >

0); the standard stop-go uses a recursive approach to estimate number of 

trips: first the choice is made on whether exactly 1 trip or 2 or more trips will 

be made; then, given that 2+ trips are to be made, the choice is whether 

exactly 2 trips or 3+ trips is to be made, etc.   

Assuming Pr(stop) is the probability of stopping at every level (i.e. stop at 1 

relative to go for 1+ trips, stop at 2 relative to go for 2+ trips, etc) and is the 

same for all levels, the stop-go process becomes a geometric count model. 

The probability of making 𝑦𝑖 trips will be then given by: 

Pr(yi|yi > 0) = Pr(yi > 0)Pr(stop) (1 − Pr(stop))yi−1    (3) 

where 
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Pr(stop) =
1

1+exp(vgi)
         (4) 

and vgi is the utility of ‘go’ (i.e. making more trips, relative to ‘stop’ at certain 

level) given by: 

vgi = β0 + β1x1i +⋯+ βkxki = Xi
′Β      (5) 

In equations (2) and (5), zi1 to zim are a set of m regressor variables (vector of 

Zi) explaining the probability of making one or more trips and xi1 to xik are a 

set of k explanatory variables (vector of Xi) forming the utility of making more 

trips (go) when an individual makes 1 or more trips. Note that the Zs and the 

Xs may or may not include terms in common. 

Considering exp(vgi) as the expected value (μi) in a geometric count model1, 

we can also write equation 3 as: 

Pr(yi|yi > 0) = Pr(yi > 0) (
1

1+μi
) (

μi

1+μi
)
yi−1

     (6) 

where the γ’s and β’s are to be estimated by maximising the loglikelihood 

function LL1:  

LL1 =∑LL1i

n

i=1

 

where 

LL1i = ln (
1

1+exp(Zi
′G)
)       if yi = 0 

 = ln (
1

1+exp(−Zi
′G)
) + ln (

1

1+exp(Xi
′Β)
) + (yi − 1) ln (

1

1+exp(−Xi
′Β)
) if yi > 0 

           (7) 

In these models vi and vgi are the utilities of making one or making more trips 

than the current number of trips (respectively). Accessibility can be 

incorporated in these functions, for example with a logsum from a mode-

destination choice model. 

2.2 Zero-inflated count models 
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The probability distribution of general zero-inflated count models can be 

written as: 

Pr(yi = t) = {
(1 − pi) + (pi)g(yi = 0),ift = 0
(pi)g(yi),ift > 0

    (8) 

where pi is the probability of trips being generated from the count model (i.e. 

1 − pi is the probability of structural zeros) given by the logistic formulation 

below2: 

pi =
λi

1+λi
          (9) 

and g(yi) is the probability distribution function of the count model given by: 

For ZIP: g(yi) = Pr(Y = yi|μi) =
μ
i

yi

Γ(yi+1)
exp(−μi)    (10) 

For ZINB: g(yi) = Pr(Y = yi|μi, α) =
Γ(

1

α
+yi)

Γ(yi+1)Γ(
1

α
)
(

1

1+αμi
)

1

α
(

αμi

1+αμi
)
yi
  (11) 

where Γ is the standard ‘gamma’ function. 

In equations (8) to (11),λi and μi are the expected (positive) values given by 

the exponential linking functions below: 

λi = exp(γ0 + γ1z1i +γ2z2i +⋯+ γmzmi) = exp(Zi
′G)     (12) 

μi = exp(β0 + β1x1i +β2x2i +⋯+ βkxki) = exp(Xi
′Β)     (13) 

where z1 to zm are a set of m regressor variables (vector of Zi) explaining the 

probability of structural zeros and x1 to xk are a set of k explanatory variables 

(vector of Xi) for the number of trips (including 0) generated by the count 

model. The parameters γ, β and α, are estimated by maximizing the log 

likelihood function (see equation (17) below for the log likelihood function LL2 

of ZINB).  

ZINB is a more general form of ZIP which relaxes the assumption of the same 

value for the mean and variance in the Poisson count model3. The term 
1

α
 in 

equation 11 above is called the dispersion parameter indicating the degree of 

difference between the mean and variance in the negative binomial count 
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model. Equation 11 collapses to equation 10 for large values of 
1

α
  (i.e. when 

αapproaches zero). 

Also, when α tends to 1, equation 11 can be written as: 

g(yi) = Pr(Y = yi|μi) = (
1

1+μi
) (

μi

1+μi
)
yi

     (14) 

which is the geometric distribution of the number of trips with μi representing 

the expected number of trips which is an exponential function of attributes.  

As such equation (8) above when α = 1 can be written as: 

Pr(yi = t) = {
(1 − pi) + pi (

1

1+μi
) ,ift = 0(a)

(pi) (
1

1+μi
) (

μi

1+μi
)
yi
,ift > 0(b)

    (15) 

The first part of equation 15a (i.e. 1 − pi) is the probability of generating 

structural zeros and the second part of 15a is the probability of making no 

trips in the count model (i.e. (
1

1+μi
) = (

e0

e0+eXi′B
)). The sum of the two parts 

corresponds to the hurdle type stop-go model where structural and functional 

zeros are not separated.   

The differences between equation (15b) and equation 6 are: 

1. pi in equation (15b) is the probability of generating trips from the count 

model (as opposed to the probability of structural zeros) while Pr(yi > 0) in 

equation (6) is the probability of making at least one trip and as such 

Pr(yi > 0) < pi. 

2. In equation (6) the count model is truncated at 0; hence we have the 

exponent yi − 1 when yi starts from 1. Equation (15b), however, can take 

zero trips generated from the count model, so we have yi which starts from 

0.  

The points above can be shown mathematically as:  

1. Solving for pi in equation (15a) we obtain: 

pi = (1 − p0) (
μi

1 + μi
)
−1

 

where, p0 is Pr(yi = 0) : the probability of making zero trips (either 

structural or functional); 
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2. Substituting pi in (15b) would give:  

Pr(yi > 0) = (1 − p0) (
1

1+μi
) (

μi

1+μi
)
yi−1

     (16) 

Equation (16) is equivalent to equation (6) which is the probability of making yi 

trips when at least one trip is made in the stop-go model. This means that the 

standard stop-go model (where the specification and the coefficients in vgiin 

equation 5 are the same for each number of trips) is a simplified version of 

ZINB with the logistic regression truncated at 0 and with the negative binomial 

distribution dispersion parameter fixed to one.  

The loglikelihood function of the more general ZINB can be given as:  

LL2 =∑LL2i

n

i=1

 

𝐿𝐿2𝑖 =∑{ln(
1

1 + 𝑒𝑥𝑝(𝑍𝑖
′𝐺)

) + ln(1 + (
1

1 + 𝛼𝑒𝑥𝑝(𝑋𝑖
′𝐵)

)

1
𝛼

exp(𝑍𝑖
′𝐺))}

𝑛

𝑖=1

𝑖𝑓𝑦𝑖 = 0 

𝐿𝐿2𝑖 =∑{ln (
1

1 + 𝑒𝑥𝑝(−𝑍𝑖
′𝐺)

) + ln Γ (
1

𝛼
+ 𝑦𝑖) − ln Γ(𝑦𝑖 + 1) − ln Γ (

1

𝛼
)

𝑛

𝑖=1

+ (
1

𝛼
) ln (

1

1 + 𝛼𝑒𝑥𝑝(𝑋𝑖
′𝐵)

) + 𝑦𝑖 ln (1 −
1

1 + 𝛼 exp(𝑋𝑖
′𝐵)

)} 𝑖𝑓𝑦𝑖 > 0 

          (17) 

Daly (1997) highlights the necessity of linking the count models to the utility 

maximization framework in modelling trip generation. It is already shown that 

the probability of zero trips being generated from the count model in ZINB are 

given by logistic regression (see equation 9); for the probability distribution 

function of the count model (i.e. Negative Binomial model), we are using Paleti 

(2016) specifications:  

Following Paleti (2016), the negative binomial probability function (i.e. 

equation 11) can be written as: 

g(yi) = Pr(Y = yi|μi, α) =

Γ (
1
α + yi)

Γ(yi + 1)Γ (
1
α)

(
αμi

1 + αμi
)
yi

∑
Γ(

1
α + k)

Γ(k + 1)Γ (
1
α)

(
αμi

1 + αμi
)
k

∞
k=0

=
evi

∑ evk∞
k=0

 



                                                                              
                                                                                                        

© AET 2017 and contributors 

8 

          (19) 

where vk = ln(
Γ(

1

α
+k)

Γ(k+1)Γ(
1

α
)
(

αμi

1+αμi
)
k

) and μi is the expected value of count 

shown in equation 13.  

It can also be shown that the stop-go model (using geometric series 

expansion ) can be written as: 

Pr(Y = yi) = Pr(go)yi−1(1 − Pr(go)) =
Pr(go)yi−1

1
(1 − Pr(go))

=
Pr(go)yi−1

∑ Pr(go)k−1∞
k=1

=
evi

∑ evk∞
k=0

 

          (20) 

where vk = ln (
μi

1+μi
)
k−1

 and μi = exp(vgi) (see equation 5). 

Again, it can be seen that equation 19 simplifies to equation 20 when α = 1.  

Moreover, the way in which terms for accessibility can be incorporated in the 

stop-go model can be emulated in the ZINB model (and hence in ZIP). 
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3. CASE STUDY 

To gain practical understanding of the influence of analysing methods on 

modelling trip frequency, this section compares appliocation of three 

altenative models – i.e. stop-go, ZIP, and ZINB.  For the case study, we use 

the UK National Travel Survey (NTS) data which Patruni et al (2017) have 

assembled for analysing rail trip frequency for commuting and business tours. 

However, to maintain compatibility, we do not use the full model presented in 

Patruni et al., because of its constants for specific numbers of tours, which are 

difficult to emulate in the other model types. 

We use identical variables for all three alternative models to ensure like with 

like comparison. As shown in Section 2, the models are nested and as such 

we are able to compare directly their loglikelihood; we also compare more 

general goodness of fit measures (AIC for this paper).  

Table 1 and Table 2 below present the findings from comparing the three 

model forms for commuting and home based business purposes. Panels 1a 

and 2a compare the loglikelihood and goodness of fit statistics. The Akaike 

Information Criterion (AIC) which is reported here deals with the trade-off 

between the goodness of fit and the complexity of the model. Panels 1b and 

2b show the influences on the choice of zero tours for stop-go and structural 

zero tours for ZIP and ZINB; panels 1c and 2c report the influences on 

number of tours made. The last shaded row in each table reports the 

dispersion factor which is estimated in the ZINB models.  

Table 1 reveals some interesting results. For commuting rail tours – where the 

dispersion factor is estimated to be zero – ZIP and ZINB report the same 

loglikelihood value, with an AIC which is slightly better for ZIP; the marginal 

improvement is due to ZIP having one fewer estimated variable (i.e. the 

dispersion factor), which is insignificant in ZINB. This finding is in line with our 

expectations; zero dispersion factor reduces ZINB to a ZIP model; and we 

note also the identical estimation of coefficients in panel 1b and 1c.   

The stop-go model shows weaker fit to the data with systematically over-

estimated influences on trip frequency (see panel 1c).  

https://en.wikipedia.org/wiki/Goodness_of_fit
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Table 1  Comparison of model results across three models for commuting rail 
frequency 

 
Stop-Go ZIP ZINB 

Panel 1a Goodness of fit statistics 

Number of Observations 125,658 125,658 125,658 

Log-Likelihood -27,864 -26,945 -26,945 

Parameters estimated 24 24 25 

AIC 55,777 53,938 53,940 

Panel 1b. Influence of socioeconomic profile on the choice of zero 

Personal Income -0.021*** -0.021*** -0.021*** 

Household Income -0.018* -0.018* -0.018* 

Number of HH Cars 0.415*** 0.416*** 0.416*** 

Company car in the household 0.142** 0.117 0.117 

Full driving licence 0.505*** 0.507*** 0.507*** 

Full time worker -0.767*** -0.704*** -0.704*** 

Part time worker -0.378*** -0.378*** -0.378*** 

year of survey -0.028*** -0.028*** -0.028*** 

Working in manufacturing sector 0.770*** 0.772*** 0.772*** 

Working in wholesale business 0.490*** 0.491*** 0.491*** 

Working in finance sector -0.778*** -0.772*** -0.772*** 

Working in health/social care sector 0.58*** 0.58*** 0.58*** 

Age 0.022*** 0.022*** 0.022*** 

No car in HH 0.185*** 0.183*** 0.183*** 

People in managerial, professional and 
administrative occupations -1.069*** -1.071*** -1.071*** 

Intercept 4.16*** 4.07*** 4.07*** 

Panel 1c. Influence of socioeconomic profile on the trip frequency 

Full time worker 0.400*** 0.329*** 0.329*** 

Working in finance sector 0.120** 0.095*** 0.095*** 

Age 0.002 0.002 0.002 

Company car in the household -0.174** -0.14*** -0.14*** 

Age below 25 0.116** 0.101** 0.101** 

Age between 26 to 35 0.097*** 0.081*** 0.081*** 

Intercept 0.35** 0.749*** 0.749*** 

Dispersion factor N/A N/A 0.000 

*** significant at 99% confidence level, ** 95%, * 90%. 
 

For home based business rail tours (Table 2) the dispersion factor is 

estimated to be significant and well above 1. Here ZINB shows the best fit to 

the data followed by the stop-go model; ZIP has the weakest fit. These results 

indicate that the goodness of fit has a direct relationship with the dispersion 

factor. Where the data is highly over-dispersed, the stop-go model, which 
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assumes a dispersion factor of 1, fits better to the data than ZIP which 

assumes a dispersion factor of zero.  

The differences across the three model structures are also observable from 

panel 2b and 2c which shows bigger variations across the models.  

Table 2  Comparison of model results across three models for home-based business 
rail frequency 

 
Stop-Go ZIP ZINB 

Panel 2a Goodness of fit statistics 

Number of Observations 125,658 125,658 125,658 

Log-Likelihood -12,243 -12,326 -12,191 

Parameters estimated 21 21 22 

AIC 24,529 24,695 24,428 

Panel 2b. Influence of socioeconomic profile on the choice of zero 

Personal Income -0.022*** -0.025*** -0.039*** 

Male -0.126 0.155 0.309*** 

Number of HH Cars 0.174*** 0.187*** 0.244*** 

Company car in the household -0.315*** -0.816*** -0.823*** 

Full driving licence 0.053 0.056 0.078 

Full time worker 0.327*** 0.319*** 0.282*** 

Part time worker -0.035*** -0.007 -0.005 

year of survey 0.430*** 0.464*** 0.608*** 

Working in manufacturing sector 0.502*** 0.52*** 0.581*** 

Working in wholesale sector 0.452*** 0.481*** 0.606*** 

Working in construction b sector 0.210** 0.228** 0.295** 

Working in health/social care sector -0.393*** -0.443*** -0.65*** 

Working in real estate sector 0.002 -0.006* -0.004 

Age 0.330*** 0.363*** 0.518*** 

Full access to car in HH 0.321*** 0.319*** 0.282*** 

People in managerial and professional 
occupations -1.355*** -1.372*** -1.489*** 

Intercept 5.277*** 4.539*** 3.263*** 

Panel 2c. Influence of socioeconomic profile on the trip frequency 

Male 0.370*** 0.348*** 0.405*** 

Time 0.039*** 0.037*** 0.037*** 

Age -0.011*** -0.011*** -0.009** 

Company car in the household -0.668*** -0.557*** -0.384*** 

Intercept -1.035*** -0.431** -1.795*** 

Dispersion factor N/A N/A 3.153*** 

*** significant at 99% confidence level, ** 95%, * 90%. 
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To better understand the scale of differences in practice, we undertook tests 

to evaluate the influence of a 10% increase in personal income on the 

probability of making business rail tours and the estimated number of tours. 

As the reference case, we evaluate a typical full time, managerial and 

professional male working in finance sector and facing car competition in their 

household (i.e. fewer cars than licence holders). We also consider the sample 

average income (i.e. £26.5k p.a.), age (i.e. 41 years old), and number of 

household cars (i.e. 1.7) in 2006. The results are shown in Table 3; panel 3a 

shows changes in the probability of making tours and panel 3b reports the 

percentage change in estimated number of tours as a result of 10% increase 

in personal income. It can be observed that in both cases, ZINB is more 

elastic than the other two models; ZINB shows 0.24% increase in the 

probability of making tours and 8.3% increase in the estimated number of 

tours when personal income is increased by 10%. These values are 0.19% 

and 5.9% for stop-go and 0.14% and 6.43% for ZIP.  
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Table 3 Comparison across three models –test of 10% increase in income on business 
rail tour-making 

 
Stop-Go ZIP ZINB 

Panel 3a- Changes in probability of making tours for 10% 
increase in income 

Probability of making no 
tours 96.76% 97.89% 97.17% 

Probability of making no 
tours - after 10% 

increase in individual 
income 96.57% 97.75% 96.93% 

Change in probability  -0.19% -0.14% -0.24% 

Panel 3b – changes in number of tours for 10% increase in 
income 

Estimated number of 
tours (in year 2008) 0.039 0.026 0.031 

Estimated number of 
tours after 10% increase 

in individual income 0.041 0.027 0.034 

%age change in 
estimated number of 

tours as a result of 10% 
increase in income 5.88% 6.43% 8.35% 

 

We further estimate changes in the probability of making no business rail 

tours by individual income ranging from £14k to £90k (see Figure 1). It can be 

observed that the differences across the models increase by increase in 

income level.  



                                                                              
                                                                                                        

© AET 2017 and contributors 

14 

 
Figure 1 Changes in probability of making no rail tours by income (business trip) 

4. DISCUSSION AND CONCLUSIONS 

This paper is motivated by the existence of different models for the prediction 

of the numbers of trips or tours made by individuals or households. The 

methods used in early transport planning exercises are rejected as they do 

not reflect that trip-making is the result of individual travellers’ choices. 

Further, they do not reflect the nature of the data, specifically that the number 

of trips are integers, i.e. 0, 1, 2 etc. and not a fractional or negative number. 

Nevertheless, there remain several different approaches, including the ‘stop-

go’ model, Poisson regression and negative binomial models, each of which 

can use a ‘hurdle’ or ‘zero inflated’ approach to account for the fact that 

observations of zero trips are more frequent than would be indicated by 

models without these features. 

A recent paper by Paleti (2016) sets a number of count models in the utility 

maximising framework, which is particularly important because it allows 

accessibility to be included in the model as an explanatory variable, coming 

out of utility-maximising models of mode and destination choice. Moreover, 

setting the models in the utility maximising framework gives a basis for 

appraisals using the models, along the lines of Daly and Miller (2006). It is 

emphasised that the three models reviewed here fit this criteria. 

The contribution of this paper is to make a detailed comparison of three of 

these models: the stop-go model (Daly, 1997), zero-inflated Poisson and zero-

inflated negative binomial (Jahanshahi et al., 2009). It is shown analytically 
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that zero-inflated Poisson (ZIP) relates closely to the stop-go model, providing 

the stop-go model formulation is not adjusted to replicate specific numbers of 

trips (e.g. that commuters are likely to go to work 5 times per week). Zero-

inflated negative binomial (ZINB) is a generalisation of ZIP. 

Tests of the three models on data previously analysed by Patruni et al. (2017), 

but with simplified implementations of the stop-go model to make it more 

comparable with ZIP and ZINB, illustrate these findings. On both data sets 

ZINB gives the best fit in terms of likelihood, but on commuter data it is no 

better than the simpler ZIP. On the commute data stop-go performs less well 

than ZIP, but on the business data it performs better, findings which relate to 

the distribution of numbers of tours. Specifically, the dispersion factor in ZINB 

is effectively constrained to 1 in the stop-go model and to 0 in ZIP; thus when 

the true value is closer to one of these extremes, the corresponding simpler 

model will perform better. 

The elasticity tests and comparisons of predicted number of tours confirm 

analytical findings of differences in model outcomes when the distribution of 

data is different to that assumed by ZIP and Stop-Go. When the dispersion 

factor is larger than 1, ZINB is more elastic to changes in behavioural 

parameters  

In future work we would recommend that methods be found for modelling in 

ZINB and ZIP where specific numbers of trips attract more or less choices 

than would be expected. Further, the identification with utility maximisation 

should be made closer, so that accessibility can be included and appraisal 

can be undertaken. It is our intention to work on these points in the near 

future. 
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NOTES 

1 Please note that the distribution of number of trips is completely geometric 

(including zeros), if Pr(y=0) = Pr(stop).  The standard-go stop specification is 

geometric FLEX(0), where FLEX is a notation used by Paleti (2016) to capture 

terms pertaining to specific counts. 

2 It is also possible to use probit regression for estimating the probability of 

structural zeros 

3 See Jahanshahi et al (2009) for more discussion on the difference between 

Poisson and negative binomial regressions. 

 
 
 


