

© AET 2016 and contributors
1

ACCELERATING TRAFFIC MODELS USING GPU-BASED TECHNOLOGY

Richard Bradley, Ian Wright, David Swain
Atkins

Roger Himlin
Highways England

Peter Heywood, Paul Richmond
University of Sheffield

Mark Mawson
The Hartree Centre, Science Technology Facilities Council

Graham Fletcher, Roland Guichard
Transport Systems Catapult

1. INTRODUCTION

Highways England is investing £10m in five new Regional Transport Models
(RTMs) for which the SATURN macroscopic traffic modelling software has
been chosen. The RTMs scale means that model runtimes are up to five days
per test and increasing model speed would greatly benefit the delivery of the
RTMs and subsequent analysis.

In recent years modelling software has started to embrace parallelisation
techniques with the introduction of CPU multi-core threading, and SATURN
has already implemented CPU multi-core parallel computing. However, whilst
each CPU thread has significant ‘clock’ speed they are limited in number with
a typical modelling PC having a maximum of 20 threads. With the concept of
parallel computing within assignment models already established, Highways
England has now turned to GPU-based technology as a potential way of
creating a step-change reduction in traffic model runtimes. GPU parallel
computing has a number of differences to the equivalent CPU computing and,
with a typical modelling mid-range PC, GPUs provides upwards of 8 TFLOPS
(Terra FLoating point Operations Per Second) of theoretical performance in
contrast with roughly 0.4 TFLOPS available in modern Intel Core i7-based
processors.

Preliminary investigations into serial and CPU multi-core execution have
highlighted that the areas of the highway modelling process that currently take
significant computer resources, in terms of memory and compute time, are
associated with the assignment of traffic to the model network, and specifically
focussed on tree building algorithms. The processes used in SATURN, or
more specifically the SATALL assignment ‘engine’, are typical of other
macroscopic traffic modelling software and therefore any solution identified
can potentially be applied more widely across the modelling industry.

© AET 2016 and contributors
2

To investigate SATALL GPU implementations Highways England and Atkins
Limited (‘Atkins’) have co-funded the first major transport modelling
collaboration between public and private sectors, bringing in support from
Transport Systems Catapult (TSC), University of Sheffield (NVIDIA partner)
and The Hartree Centre (high performance computing). The team was
challenged to find a step change reduction in runtimes in the first transport
modelling application using GPU-based technology within the study’s six-
month timeframe.

2. WHY USE GPU-BASED TECHNOLOGY?

2.1 CPU and GPU-based technology

Computing hardware has been increasing in speed at a rate largely
represented by Moore’s law since 1965. However, it has slowed in recent
years (reflecting the increasing difficulty in making transistors smaller) but
reducing transport model runtimes remains a high priority due to the
increasing number and size of large transport models enabled by generic,
maintained datasets. This continuous need is reflected in the Moore's law
compensator known as Wirth's law which is the principle that successive
generations of computer software increase in size and complexity, thereby
offsetting the performance gains predicted by Moore's law.

To help continue Moore’s law a new definition of the law with greater
collaboration between hardware and software may be necessary. As the
growth in CPU speed is no longer expected to continue at the same historical
rate, re-thinking algorithms to be massively parallelised could allow highly
scalable data-parallel computing to provide massive economies of scale. This
is unlikely to be achieved with CPU-based hardware as CPUs were primarily
designed to execute serial code and extract maximum parallelism out of serial
execution to improve performance. GPUs on the other hand are purpose built
parallel computers which are fed parallel workloads. In fact the entire real-time
graphics environment is designed around the massively parallel nature of
GPUs. Another relevant difference between CPU and GPU is cost. GPUs
typically offer greater performance figures for lower cost and also lower power
usage per FLOP.

The approach to achieving continued step-change reduction in model
runtimes is illustrated as three phases in computing technology Figure 1
below. The step change from CPU ‘serial’ to CPU ‘parallel’ computing is now
well-embedded within the transport modelling software, including SATURN

© AET 2016 and contributors
3

Multi-Core for example. This has generally involved relatively minor changes
to the software to spread the workload over a small number of limited but fast
cores operating in parallel. Typically this might include spreading the
workload over 12 cores, and retains the algorithms designed to optimise serial
performance whilst minimising duplication in the parallelised code.

Figure 1 Step Changes in Computing

The step change from CPU parallel to GPU ‘accelerated’ computing is
enabled through an even greater collaboration between hardware and
software. Accelerated computing improves the execution of a specific
algorithm by allowing greater concurrency, and reducing the overheads
associated with managing this greater concurrency. As such the algorithms
used must be suitable for simpler more repetitive calculations, with fewer
iterative operations and less regard to wasted effort.

In an accelerated system both the CPU and GPU play important roles. The
CPU, and general computing hardware, handles the operating system and
provides the interface between the software, and the user and data, as well as
managing the generic processes within the program. Unlike in parallel
computing, where the CPU will also handle the more demanding
computations within the software, the nature of accelerated computing is to
package-up the massively parallelisable computations and send these to the
GPU, thus running independently of the CPU and general computing
hardware, as shown in Figure 2 below.

© AET 2016 and contributors
4

As shown in the figure data has to be
transferred to the GPU via the PCI
express port. Managing this transfer of
data becomes an important aspect of the
achievable speed in accelerated
computing, due to the high memory
latency of the PCI express port, and
therefore a key area for investigation.

The data transferred to the GPU needs
to ‘parallel’ data so as to allow the tasks
to be performed on the data to also be
parallel. It is therefore also important to ensure the data and the algorithm are
consistently highly parallelisable throughout these key processes.

2.2 Algorithmic changes

It was also important to understand at an early stage the specific areas /
routines in the SATALL code that were the most computational intensive.
This was achieved by ‘profiling’ existing runs of the SATALL assignment /
simulation. This profiling confirmed that the bulk of the runtime was
associated with the building of ‘paths’, with paths representing a series of
nodes through the network to route from one network node to another. It was
possible to track the majority of the runtime to the path build algorithm, which
uses the d’Esopo-Pape algorithm (which is not unusual for macro assignment
models). This confirmed that if the assignment algorithm, and the data fed
into the algorithm, could be massively parallelised then a step-change in
runtime may be achievable. However, and as defined in Amdahl’s law, any
serial aspects of the code will be the ultimate runtime constraint.

A key decision for the algorithm is very much dependent on the choice of CPU
or GPU due to the type of parallelism possible. The first parallelism option is
‘task parallelism’ where different threads are used for different tasks, and this
is best suited for CPU parallelism. For example, if a system is running code
with thread A and thread B, and we wish to do tasks X and Y, it is possible to
tell thread A to do task X and thread B to do task Y simultaneously.

The second option is ‘data parallelism’, which is best suited for GPUs and
focuses on distributing the data across parallel computing and is achieved

Figure 2 Relationship between
CPU and GPU

© AET 2016 and contributors
5

when each thread performs the same task on different pieces of distributed
data. For example, thread A and thread B can undertake the same task X on
data D. It is possible to tell thread A to do task X on one part of data D and
thread B on another part simultaneously. Consider adding two matrices
where Thread A could add all elements from the top half of the matrices, while
thread B could add all elements from the bottom half. Since the two threads
processors work in parallel, the job of performing matrix addition would take
one half the time of performing the same operation in serial using one thread
alone. If the matrix was say 5,000 zones, and there were 5,000 threads
available, then each cell could be added simultaneously.

Within the existing SATALL path-building routine the majority of serial
execution is based on the Single Source Shortest Path (SSSP) computation,
which can be done either using task parallelism using the existing d’Esopo-
Pape (or an alternative like Dijkstra), or in data parallelism, and using an
alternative algorithm that is not focused on optimising serial processes.

2.3 Hardware considerations

Knowledge of likely hardware to be used can affect choices in optimising the
code, via settings in the compiler, plus optimisation of the transfer of data
across the PCI express port. It was also considered important to identify a
specific hardware setup that would be typically used by the RTM modelling
consortia. So, whilst a number of different graphics cards were tested, the
main optimisation and testing was undertaken using the CUDA compute
capability 5.0, optimised for the NVIDIA Titan X (Maxwell) GPU.

The existing SATALL code uses Double Precision (DP) to accumulate link
flow totals. It was important to retain this precision to ensure stable model
runs. However, Maxwell GPU hardware such as the Titan X only offer 1/32
DP performance compared to Single Precision (SP). Whilst alternative cards /
architectures can provide better DP performance, they were not within the
agreed target price range for typical model users. Accordingly, the project
continued with this target hardware for investigating speed enhancements,
and retaining flow accumulation accuracy became an additional area requiring
investigation.

3. EXISTING SATURN SOFTWARE

3.1 Model structures

© AET 2016 and contributors
6

The SATURN congested assignment model is a complex procedure in which
successive attempts to find the quickest routes across the network for each

journey (the SATASS stage)
are interspersed with updating
calculations about the
conflicting volumes at each
junction and the nature of the
delays that are likely to be
faced by each junction user (the
SATSIM stage). The overall
process is illustrated in Figure
3.

Figure 3 SATURN assignment
structure

After several loops of this SATASS / SATSIM process, an equilibrium position
is achieved in which traffic flows and junction delays are relatively stable in
successive loops. At this point, the SATASS / SATSIM process is deemed to
have converged, little can be gained by carrying out more loops of the
program and the results can be regarded as sufficiently robust.

The SATURN Multi-Core add-on focuses on the SATASS only and
undertakes the path building and loading as multi-threaded process for each
origin. The GPU-based technology focusses on the same processes.

SATURN networks are coded as: ‘buffer’ to represent node / link topography
and link based capacity restraint; and ‘simulation’ to represent junction
capacity restraint. SATURN includes an internal network aggregation called
‘spider’ links that use network aggregation where links and / or nodes in the
basic assignment network are combined together into an equivalent set of
aggregated links / nodes with the objective of reducing the runtime required to
carry out the basic assignment steps of path building.

The three distinct steps in SATALL assignment include: route choice;
accumulate flow; and cost skimming. The route choice includes building
SSSP, using an ‘all-or-nothing’ path build for each i-j pair. The flow
accumulation then applies the Tij trips to each link along the path. The cost
skim then accumulates the costs along a path associated with the flows on
each link.

© AET 2016 and contributors
7

Figure 4 shows the runtime profile of the SSSP and flow accumulation
(referenced ‘Flow’) in the context of running the London Highway Assignment
Model (LoHAM) in serial execution.

The route choice and building of paths was
identified as taking 97.4% of the LoHAM
runtime in serial execution, which was
concentrated on calls to the SSSP algorithm.
The profiling showed that the three routines of
route choice, flow accumulation and cost
skimming represented the highest
computational demand and all three included
the tree-build algorithm. Within this algorithm,
the highest demand was for the routine called
Load-It, which was therefore investigated first.

The SSSP algorithm finds the node based path for each single origin to each
network node with the lowest cumulative travel cost. The SATURN SSSP
algorithm is based on d’Esopo-Pape algorithm. There are numerous other
SSSP algorithms, including the popular Dijkstra, but d’Esopo-Pape was
considered the best algorithm during the original SATURN development (and,

with various optimisations, continues to perform
very efficiently).

Figure 5 SSSP algorithm

Core to understanding the d’Esopo-Pape algorithm
is that it maintains a ‘priority queue’ of nodes to
explore shortest paths, which is common to all
SSSP algorithms that are efficient when executed
in serial. The algorithm starts by initialising the cost
back from each node to the origin to infinity with the
exception of the origin, which is initialised to 0.

In the example in Figure 5 the cost of getting to
origin 0 is set to infinity for nodes 1 to 4. In iteration
1 the algorithm looks for connecting nodes, finds
node 1 and updates the cost of access origin 0
from node 1 to the associated link cost of 1 unit.
Node 1 is then added to the ‘loose end’ array,

Figure 4 SATALL Assignment

© AET 2016 and contributors
8

containing all nodes but prioritised by the cheapest cost first, which at this
iteration will have node 1 first. In iteration 2, the algorithm starts at the top
priority loose end node of 1 and accumulates the costs from connecting nodes
2, 3 and 4. These nodes are then added to the loose end array, with node 2
prioritised first with the shortest path of getting back to origin 0 of 1 + 2 = 3
units. The algorithm searches through the loose end table nodes in this way
until all nodes have been visited, identified as the node cost back to origin not
being infinity, with the shortest path stored in the ‘back node’ array.

This is a highly serial process because the priority queue is processed in
order. As such d’Esopo-Pape is not massively parallelisable, and in particular
data parallelisable, as required for GPU-based technology.

The flow accumulation is, however, a parallel problem as each path from
destinations back to a single origin can be processed concurrently. However,
when the link flow is accumulated this needs to be synchronised with the other
concurrent paths, which presents additional computational speed restrictions.

3.2 Test Models

A number of real-life SATURN traffic models were required for testing
purposes, representing a range of sizes to allow quick coding checks, and to
provide evidence that the changes are likely to work for the RTMs. As such
four models were used as shown in Table 1 below, with the Central London
HAM (CLoHAM) closest in size to the proposed RTMs.

Table 1 Test model summary

Model Size Zones
User

Classes
Simulated
Junctions

Typical Runtimes
(SATASS & SATSIM)
Serial Multi-Core

Epsom Test 12 2 17 1.6 seconds 1.4 seconds

Derby Medium 547 13 3,686 0.47 hours 0.14 hours

CLoHAM Large 2,548 5 12,932 4.18 hours 0.62 hours

LoHAM Extra Large 5,194 5 25,575 15.4 hours 1.80 hours

Hardware: Intel Core i7 2nd Gen Desktop (Four Core + HT)

4. SOFTWARE DEVELOPMENT AND INTEGRATION

4.1 Algorithm change

The existing use of the d’Esopo-Pape algorithm, or indeed any efficient serial
SSSP approach, needed to be changed as it is the focus for runtime demand,

© AET 2016 and contributors
9

and the scalable and step-change in runtime requires data parallelism to allow
the best use of GPU-based technology.

A literature review considered a number of SSSP algorithms that indicated a
speedup potential in serial and alternative algorithms that could be
implemented efficiently in a data parallel approach. The literature review
found a 2014 paper titled ‘Work Efficient Parallel GPU Methods for SSSP’
detailed efficient data parallel methods. The methods discussed were
implemented using the Gunrock library, developed by academics at the
University of California, and which is relevant as it demonstrates the
techniques could be implemented in a transport model. A range of GPU
accelerated node-link network processing algorithms were explored. The
paper showed that GPU accelerated methods out perform a heavily optimised
Dijkstra implementation on a number of different networks. Furthermore the
Gunrock library promotes a high performance implementation of the Bellman-
Ford algorithm, which became the focus for this project.

The Bellman-Ford algorithm iterates incrementally from 1, each time
incrementing the number of nodes found in the shortest paths, and up to the
total number nodes minus 1, which is the theoretical maximum number of
times before the longest shortest-path has been found. The key difference is
that Bellman-Ford does not maintain a prioritised loose end array, as with the
d’Esopo-Pape algorithm. Instead each link in the network is considered at

each iteration, ensuring that all connected
shortest paths are found.

Figure 6 Parallel SSSP Algorithm

Both d’Esopo-Pape and Bellman-Ford
algorithms produce the same output, which
includes an array of back nodes and an array of
back node costs, allowing a similar interface.
Figure 6 shows the iterative algorithm on small
example network. For the origin node 0, all links
are considered at each iteration, but only links
coloured orange result in an update of the back
node arrays, as it looks for the shortest path with
the number of nodes indicated by the iteration

© AET 2016 and contributors
10

number. Effectively iteration 4 is redundant but that is not known until it has
been processed.

As the Bellman-Ford algorithm evaluates all links in the network at each
iteration, it is a poor candidate for serial or task-parallel execution as more
efficient serial and task-parallel algorithms exist. In the example Bellman-Ford
considers 6 links at each iteration (24 links in total) to find the shortest paths,
whereas D’Esopo-Pape only considers 6 links through the efficient use of a
priority queue array. However, Bellman-Ford is an ideal candidate for data-
parallel execution as each link can be considered simultaneously at each
iteration. Furthermore, computing the shortest paths for multiple origin zones
concurrently allows greater levels of parallelism to be exposed, making better
use of the highly-parallel GPU hardware.

4.2 Algorithm route choice development iterations

The algorithm development was undertaken using data extracted from
SATALL at the point of beginning a SSSP routine and the corresponding
output, and the SSSP code extracted as the source for the first algorithm. A
simple harness would provide this data to the algorithmic code under test,
without requiring recourse to SATALL. This enabled a rapid turnaround in
tests to enable early development of the new algorithm while integration and
compiler issues were resolved. An iterative agile process was followed to
update the extracted SATALL software to introduce, and then optimise, the
Bellman-Ford algorithm, with the first stage associated with the extracted
Load-It route choice code. The list below details each iterative change of the
extracted Load-It code and Figure 7 below shows the speedup achieved.

Iteration A1 – D’Esopo-Pape Serial
D’Esopo-Pape algorithm in serial execution used for reference.

Iteration A2 – Naïve Bellman-Ford
Simplest possible implementation of Bellman-Ford with no optimisation. As
anticipated this resulted in a poor performance, to such an extent that it went
off the scale in the runtime figure, as indicated by the striped bars.

Iteration A3 – Bellman-Ford Early Termination
Bellman-Ford will continue to iterate to a maximum number of iterations based
on the number of nodes in the network minus 1. However, it is not always
necessary to undertake all iterations and therefore the code terminates if two

© AET 2016 and contributors
11

successive iterations have the same costs. This provided good runtime
improvements over the A2.

Iteration A4 – Bellman-Ford Node Frontier
Introduction of a node frontier - an array which contains the nodes updated in
the previous iteration. Only links which leave nodes in the frontier array are
considered, saving a considerable amount of work. Modest improvement over
A3 but significantly slower than the reference runtimes from A1.

Iteration A5 – Bellman-Ford Load Balancing
Different nodes have different numbers of connected links. Instead of the links
from a single node being processed by a single thread, a group of threads co-
operate to process the links from the group of nodes, balancing the workload.
This change introduced little improvement over A4.

Iteration A6 – Bellman-Ford All Nodes
The existing D’Esopo-Pape and A5 Bellman-Ford algorithms stop at the node
linking to the destination zone link connector, and then add the zone
connector in serial after the path build. This change moves the destination
zone into the process so it can be parallelised. This change introduced little
improvement over A5, but increases the amount of serial code replaced.

Iteration A7 - Bellman-Ford Larger Results Arrays for Multiple Origins
The back node and back node cost arrays were increased in size to store the
results for multiple origins. This enables multiple concurrent origins and also
improved memory access. This change introduced little improvement over A6.

Iteration A8 – Bellman-Ford Multiple Origins
Parallelise and find the shortest paths for all origin zones concurrently. This
provided the desired step-change in runtimes compared to the reference
runtimes from A1.

Iteration A9 – Bellman-Ford Dynamic Batching
Origin batching was added to dynamically configure the data sent to the GPU
to improve the use of memory and allow execution of models too large for a
single GPU. This change introduced little improvement over A8.

Iteration A10 – Bellman-Ford Improved Load Balancing
Implemented a different search strategy to better optimise the load balance
across threads. This change introduced some modest improvements over A9.

© AET 2016 and contributors
12

Iteration A11 – Bellman-Ford Interleafed Back Node & Cost Array
The back node and back node cost arrays were ‘interleafed’ to improve
memory access patterns and reduce the number of atomic operations which
add significantly to the runtimes. Atomic operations are operations which are
guaranteed to occur in order (serialised) and be required to avoid race
conditions. Interleaved results allow a reduction in the number of atomic
operations required and therefore a reduction in serialisation. This change
introduced little improvement over A10.

Other points to note following the improvements, but that were omitted from
the Load-It code changes, are listed below.

• GPU acceleration for non-spider networks was not implemented due to
the complexities of ‘u-turns’ on the buffer-simulation network
boundaries having significant performance impact on Bellman-Ford. As
most networks will always use spider networks in the path build (for
speed reasons and the default option) this was considered acceptable.

• Memory must be initialised for each path build; asynchronous memory
initialisation for large arrays typically makes full use of the GPU,
leading to serial execution and a minor reduction in performance due to
additional overhead costs.

• Alternate back node storage with the interleaved back node array
stored by origin and then node, i.e. |o1n1|o1n2|...|o2n1|o2n2|... could
instead it could be stored |o1n1|o2n1|...|o1n2|o2n2|.... However, this
did not improve overall performance but if the A4 frontier version was
also modified to be interleaved it may result in a net increase.

• Batching sets of origins for SSSP calculation would allow concurrent

Figure 7 Route choice runtimes
(Load-It extracted code)

© AET 2016 and contributors
13

batch execution allowing the GPU driver to better manage hardware
availability, however doing so results in a greater number of expensive
device-host data transfer over the PCI express port. The cost of the
additional data transfer outweighs the benefits.

• Dividing the main SSSP function into smaller units (as implemented in
the Gunrock framework) would enable improved memory access
patterns. This however results in a much larger memory footprint
reducing the number of concurrent origins being processed on the GPU
simultaneously. Early investigation led to a loss of performance due to
the reduced level of parallelism.

4.3 Algorithm flow accumulation development iterations

Towards the last iterations of the optimisation of the Bellman-Ford route
choice implementation the SATALL profile indicated that the runtime focus
was moving from the route choice to the flow accumulation. Figure 8 shows
that for iteration A11 the flow accumulation represented the majority of the
runtimes in the full SATALL code, and therefore this became the next focus.

Figure 8 Distribution of runtime following A11 Bellman-Ford route
choice implementation

The flow accumulation process uses the shortest paths code produced by the
Bellman-Ford algorithm from A11 with the origin-destination trip matrix to
calculate the flow per link in the network for the current user class. For each
trip in the matrix, the route is traced from destination back to the origin,
accumulating the flow value as each link is encountered. This process is
performed on the GPU, with the challenge of providing a speedup whilst
producing the results with the correct precision.

© AET 2016 and contributors
14

Unfortunately the GPU hardware (Maxwell) used during this project does not
support a key atomic operation in hardware for DP floating point numbers.
Two alternative solutions were investigated: firstly the use of SP for the
accumulation of flow was investigated along with options for minimising the
loss of precision; and secondly the use of parallel primitives to minimise
expensive software-based atomic operations was investigated.

Again an iterative agile process was followed to update the SATALL software
to introduce, and then optimise, the Bellman-Ford algorithm, with the second

stage associated with the flow
accumulation to the array ‘Flow8’.
The list below details each iterative
change using the now integrated
Load-It routine, of which the flow
accumulation is part, and Figure 9
shows the speedup achieved.

Iteration A12 – Naïve DP Flow8
Retains Flow8 DP on GPU hardware.
Significant atomic operations to
serialise execution result in poor
performance compared to the serial
A1 option.

Iteration A13 – Naïve SP Flow8
Unstable results so not reported.

Iteration A14 – High-Low SP Flow8 on GPU
Inspects the size of a trip and accumulates into two SP ‘buckets’, one for low
size numbers and the other for high size numbers. Model results are more
stable with minimal loss of precision using multiple 32-bit summations
equating to 0.000022% total error. A significant speedup compared to A1.

Iteration A15 – Improved DP Performance by Reducing Atomic
Contention
The use of atomic operations is ‘minimised’ by processing a single link of each
trip at a time, sorting the required data and using parallel reduction, reducing
the number of atomic operations required. A significant speedup compared to
A1 was achieved with accurate results.

Figure 9 Flow accumulation
runtimes (SATASS
integrated code)

© AET 2016 and contributors
15

4.4 SATALL integration development iterations

The optimised Bellman-Ford algorithm implementation, including updates for
route choice and flow accumulation, plus optimised integration, allowed three
further development iterations to be created and tested within this project.

The list below details each iterative change of the SATALL code, now referred
to as the new SATGPU program, and Figure 10 and Figure 11 shows the
serial and multi-core speedup comparison for Xeon Server (12 cores / 24
threads) Titan X (Maxwell, 3072 cores, 1075 MHz, 12GB GDDR5).

Figure 12 and Figure 13 shows the serial and multi-core speedup
comparison for PC i7 (4 cores / 8 threads) Titan X (Maxwell).

Iteration A16 – A11 with OpenMP Flow Computation on CPU
Hybrid version of GPU for route choice and flow accumulation, plus a CPU
OpenMP multi-core for outer user class loops (part of the supply segment
loops). However, the results unavailable due to unresolved integration issues.

Iteration A17 – A15 with Improved DP Flow Compute
First SATGPU release candidate and provides best DP results.

Iteration A18 – A14 with Improved accuracy SP Results
Second SATGPU release candidate and best runtime performance using SP
with improved flow accumulation accuracy and stable model results.

Figure 10 H1 - Server Xeon Titan X SATGPU serial runtime comparisons
(total SATASS + SATSIM assignment integrated code)

Figure 11 H1 - Server Xeon Titan X SATGPU multi-core runtime
comparisons (total SATASS + SATSIM assignment integrated code)

© AET 2016 and contributors
16

Figure 12 H2 - PC i7 Titan X SATGPU serial runtime comparisons (total
SATASS + SATSIM assignment integrated code)

Figure 13 H2 - PC i7 Titan X SATGPU multi-core runtime comparisons
(total SATASS + SATSIM assignment integrated code)

4.5 Software Testing

© AET 2016 and contributors
17

The testing involved comparing a number of results and checking that certain
rules were passed successfully. Model stability was important, which was
primarily measured using convergence stability, and helped show how the
software could replicate previous results. This was a particular issue for the
flow accumulation as the use of SP, or DP emulation, was known to make the
model outputs unstable.

Furthermore the Bellman-Ford algorithm when implemented in parallel is not
deterministic for networks with multiple, equal-cost shortest paths. When a
network contains multiple routes from A to B with equal cost paths there is no
guarantee that one route will be selected over the other (or should there be).
This could be resolved for single link variance with some impact on
performance by checking the link ID of equal cost links and selecting the
lowest / highest value. This does not resolve routes with multiple link routes
with equivalent costs - the alternate route with an equal cost path will not be
considered due to how the frontier propagates one link at a time. A way to
resolve this issue was not found without a significant impact on performance.
However, if the model was fully converged then stable results compared to the
reference case were achieved. No convergence or stability issues were
encountered except for the use of SP in the flow accumulator. Table 2 below
contains the CLoHAM convergence summary for software version A15.

Table 2 Software version A15 CLoHAM convergence summary

Measure / Criterion
Multi-Core
(Reference)

A15
(GPU)

%Diff

Convergence

Stability (%Flows) 98.5% 98.8%

Stability (%Delays) 99.3% 99.4%

Proximity (%GAP) 0.009% 0.009%

Summary
Statistics

Total Distance (pcu-km) 2,522,793 2,522,916 0.00%

Total Time (pcu-hrs) 114,903 114,918 +0.01%

Total Delays (pcu-hrs) 4,370 4,369 -0.02%

It was important to not only benchmark each software version against a
reference case but to also repeat a full model validation. As such an existing
LoHAM calibration and validation analysis was successfully repeated as
shown in Table 3 below.

Table 3 Repeat of LoHAM validation
Measure / Criterion Aspiration Multi-Core A15 Diff

© AET 2016 and contributors
18

(Reference) (GPU)

Links - GEH <5 85% 64% 64% 0%

Links - GEH <7.5 85% 78% 78% 0%

Links - DMRB Flow Criteria 85% 74% 74% 0%

Screenline - Flow Difference <5% 85% 90% 90% 0%

Enclosure - Flow Difference <5% 85% 94% 96% +2%

Mini screenline - GEH <5 85% 91% 91% 0%

JT Routes - Time Difference < 15% 85% 92.1% 92.6% +0.5%

Links - GEH <5 85% 64% 64% 0%

5. NEXT STEPS

5.1 Potential for further runtime improvements

During the commissioning and early stages of this project it was confirmed
that to achieve a step-change runtime reduction that the SATALL code
needed to become massively data parallel, and that the most likely future
platform to provide continued improvement in computational speed was
through the use of GPU-based technology. This first phase therefore
investigated whether there is potential to use GPU-based technology to
improve the runtimes of a traffic assignment model. This has been achieved
by moving sections of the code that contain the path build onto a single GPU
device. The areas for further investigation are discussed below and include:

• further algorithmic optimisation;

• scaling and improvements in hardware; and

• investigating other serial processing within the existing code.

5.2 Future algorithmic optimisation

Potential future optimisations have been identified but not implemented during
this first phase, as listed below.

• SSSP priority queue - process network nodes in two stages, with the
likely-update nodes before less likely (see Gunrock Delta stepping).

© AET 2016 and contributors
19

• SSSP for origins with trips - an optimisation from the original Load-It
routine. If an origin has no trips, do not compute the SSSP. However,
this scenario was not present in any of the test models.

• Additional asynchronous compute / data transfer - perform more
operations asynchronous to other work.

• Reduced ‘pinning’ of memory - pinning memory has a cost. If the
flow data could be pinned once and only once this would improve
performance. Initial investigations resulted in model instability.

• Block-level sorting for flow accumulation - flow accumulation
currently suffers from poor memory access patterns. A global sort to
improve this costs more than it gains, but doing a block level sort
should improve performance, and for both DP and SP variants. This
only applies to Maxwell based GPUs.

• Improved SP – the performance offered by SP flow accumulation
compared to DP on Maxwell based GPUs and earlier is considerable.
Techniques to reduce the loss of precision could be implement to
produce a SP solution with no or minimal loss of precision compared to
using DP (Kahan Summation, etc.).

• Improved support for devices with limited memory - large networks
may suffer runtime constraints on GPUs with fewer cores / memory
than tested during this initial project. The flow accumulation method
may need modifying to account for very large trip matrices on these
smaller devices, by batching the number of trips being traced
concurrently.

• Minimise data transfer - data is copied from host memory to GPU
memory many times throughout the application runtime. This data
transfer over the PCI express port is relatively slow and costly in terms
of runtime. On GPUs with sufficient memory the majority of these data
transfers could be performed once and only once, greatly reducing the
time spent transferring data.

• Multiple GPUs for stochastic simulation – parallel SSSP for
alternate route networks is non-deterministic. By launching the same
simulation many times on multiple devices the costs of file input /

© AET 2016 and contributors
20

output, etc., are minimised, while allowing multiple runs to be
aggregated / analysed.

• Process multiple user classes concurrently – in the test networks,
up to thirteen user classes are processed serially one after the other.
Each user class is essentially independent when the flow is
accumulated, so multiple user classes were processed concurrently
significant gains in performance could be achieved (potentially up to ‘n’
user classes provided sufficient memory and compute is available).

• Modified spider network generation - the generation of spider
networks from non-spider networks could be modified to produce
networks which are better suited to GPU based processing. Denser
networks with a lower ‘diameter’ will result in increased performance.

5.3 Scaling and improvements in hardware

This first phase has demonstrated the use of a single GPU to accelerate the
assignment phase of SATALL, optimised for the Maxwell Titan X. These new
data-parallel methods can be scaled up to process more data concurrently
and, where required, scale across multiple GPUs to take advantage of the
increasingly large computational power available at relatively low cost.

For the smaller models a single user class does not fully occupy a GPU.
Launching the assignment operations for multiple user classes on a single
GPU concurrently would further reduce the run-time of the application and
also pave the way for subsequently undertaking multiple user classes on
multiple GPUs. Using multiple GPUs for a single application would provide
benefit to larger models which occupy a much greater portion of the resources
of a single GPU. This could reduce the runtime of assigning all the user
classes to the time taken to assign the longest running user class. On a single
GPU each user class would be assigned to its own CUDA streams, which the
CUDA runtime intelligently handles on a single GPU. Across multiple GPUs
built-in CUDA functions would select the appropriate device for each user
class prior to the assignment algorithm launch to load-balance the system.

For very large models, greater in size than the largest known SATURN
network used in this project, the assignment process for a single user class
may not fit on a single device, although the processing would be batched.
Changes to the assignment code could exchange data between multiple

© AET 2016 and contributors
21

GPUs at the beginning and end of assignment iterations as they separately
perform the assignment on different subsets of the same user class.

A single PC workstation will typically support two to four GPUs, although
configurations of up to eight are available. This approach to scaling therefore
becomes limited by the number of user classes and size of the model, limiting
the runtime reductions when multiple GPUs can be used asynchronously for
parallel user classes on multiple GPUs. This issue may not be reached, as for
LoHAM and RTMs the largest single user class comfortably fits on a single
Titan X GPU device. However, if models bigger than LoHAM are encountered
then further scaling could be achieved by accessing a large compute cluster.

At the cluster-level, the programming model must change slightly as
communication between the different nodes of a cluster must be performed
explicitly. Message Passing Interface (MPI) would be used to communicate
data between different GPUs, but otherwise the methodology outlined
previously would hold true. As well as the benefit of improved performance by
splitting user classes across many GPUs, an MPI-enabled multi-GPU
implementation would allow SATGPU to handle network sizes far larger than
those currently available, and are planned for the foreseeable future.

A performance limiting factor for the flow accumulation code in DP is the
atomic add operation in DP. Up to the Maxwell Titan X architecture the DP
atomic add is not implemented at the hardware level. Instead it must be
implemented in software, the method of doing so is not ideal and the issue
compounds as more atomic operations are required, i.e. larger models. This
has a significant negative impact on performance and therefore a much more
complex flow accumulation method was implemented for this phase. The
newer Pascal GPU architecture combined with the latest version of CUDA
(CUDA 8.0) does include this instruction at the hardware level. This offers
significant performance gains compared to the solution used for
Maxwell based GPUs, with early work suggesting a further assignment
speedup of up to 2x compared the Maxwell GPUs already demonstrated.

5.4 Investigating other serial processing

Amdahl’s law correctly identifies that the serial processes within the SATGPU
program run will constrain the overall runtime improvements. This phase of
the project has focused on the traffic assignment as the highest computational
element of the existing SATALL runtime. However, current runs of the RTMs
are now indicating that the junction simulation are equalling or even exceeding

© AET 2016 and contributors
22

the runtimes of the assignment. So a clear focus for future development is to
also parallelise the simulation code. This could start with CPU parallelisation
but, following this project, it seems more likely that a GPU implementation
could provide more significant longer term improvements.

Achieving massive data parallelisation in the simulation code could require
algorithmic changes. However, starting with a simple implementation on GPU
could provide quick and significant runtime improvements, and would also
provide the building blocks for further improvements.

6. CONCLUSION

There is no doubt that, in an attempt to find efficiencies, authorities are
moving to larger transport models that can be used across many schemes,
and that further modelling requirements for bigger and more complex models
will continue. Previously this has not been a practical option due to data and
model runtimes. With the advent of generic maintained datasets, and
contemporary datasets like mobile phone data and GPS data, this information
is now enabling the creation of larger models, both regional and national.
However, whilst there has been significant improvements in computer
hardware power and affordability, for example ‘blade’ servers, as well as
significant improvements in CPU based multi-core parallelisation, model
runtimes still remain a major constraint for the growing size of models.

Our research has indicated that, irrespective of the hardware, the first task of
making the software massively data parallelisable is achievable. This is a
significant task as the algorithms that may have been the most efficient for
serial, and task parallelism, may not be the best for data parallelisable. This
project has shown this is possible by successfully replacing the D’Esopo-Pape
path build algorithm with the Bellman-Ford algorithm. The project has
demonstrated that through a number of optimisations the Bellman-Ford
algorithm can achieve the require step-change in assignment modelling
runtime. And this is irrespective of the wasted computation, which is now
affordable due to the abundance of threads available on the GPU device.

The optimisation of implementing the GPU-based technology was bespoke for
each instance of the path build algorithm. This included exploring the best
options for the computationally slow flow accumulation using either: DP
numbers and achieving a high level of stability; or emulating the flow
accumulation with SP or approximation of DP, and achieving varying levels of
stability. The outcome of the implementation of Bellman-Ford is not only

© AET 2016 and contributors
23

highly stable but has also been shown to successfully reproduce the existing
LoHAM validation, one of UK’s largest models covering Greater London.

With the principle established that data parallelism is now possible, the
problem then becomes about scaling across multiple GPUs, and importantly
that the copying of data across the PCI express port ‘bottle neck’ can be
achieved asynchronously across multiple GPUs. The larger the model the
more efficient this transfer becomes, and the denser the network the more
efficient the Bellman-Ford implementation becomes, meaning this approach is
well aligned to meeting the runtime challenges faced by the direction of
change of increasing model size and complexity.

This report indicates that the shippable SATGPU program from this project,
with a single Maxwell Titan X for the largest models, can be expected to
achieve up to 5x faster than PC based multi-core and up to 30x faster than
serial. And the advances in the new Pascal Titan X (August 2016) further
demonstrates that GPU-based technology is most likely technology to
maintain Moore’s law, and provide affordable and substantial increases in
speed due to its energy efficiency and cost.

BIBLIOGRAPHY

Davidson, Andrew, et al. "Work-efficient parallel GPU methods for single-
source shortest paths." Parallel and Distributed Processing Symposium, 2014
IEEE 28th International. IEEE, 2014

Głąbowski, M., et al. “Efficiency evaluation of shortest path algorithms.” AICT
2013, The Ninth Advanced International Conference on Telecommunications.
2013

U. Pape, Implementation and efficiency of moore-algorithms for the shortest
route problem, Mathematical Programming 7 (1) (1974) 212–222

Van Vliet, D. Hall, M.D. and Willumsen, L.G. (1980) SATURN - A Simulation
Assignment Model for the Evaluation of Traffic Management Schemes, Traffic
Engineering & Control, 21, 168-176, April 1980.

Van Vliet, D. (1978) Improved Shortest Path Algorithms for Transport
Networks. Transportation Research, Volume 12, pp. 7-20. Pergamon Press
1978.

© AET 2016 and contributors
24

Wang, Yangzihao, et al. "Gunrock: A high-performance graph processing
library on the GPU." Proceedings of the 21st ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. ACM, 2016

Wright, I. Xiang, Y. Van Vliet, D. Bar-Gera, H. Boyce, D. (2010) The Practical
Benefits of the SATURN Origin-based Assignment Algorithm and Network
Aggregation Techniques. Proceedings of the European Transport Conference
2010

	1. Introduction
	2. Why use GPU-based Technology?
	2.1 CPU and GPU-based technology
	2.2 Algorithmic changes
	2.3 Hardware considerations
	3. Existing SATURN software
	3.1 Model structures
	3.2 Test Models
	4. Software development and integration
	4.1 Algorithm change
	4.2 Algorithm route choice development iterations
	4.3 Algorithm flow accumulation development iterations
	4.4 SATALL integration development iterations
	4.5 Software Testing
	5. Next steps
	5.1 Potential for further runtime improvements
	5.2 Future algorithmic optimisation
	5.3 Scaling and improvements in hardware
	5.4 Investigating other serial processing
	6. Conclusion

