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1. INTRODUCTION 

Highways England is investing £10m in five new Regional Transport Models 
(RTMs) for which the SATURN macroscopic traffic modelling software has 
been chosen. The RTMs scale means that model runtimes are up to five days 
per test and increasing model speed would greatly benefit the delivery of the 
RTMs and subsequent analysis. 

In recent years modelling software has started to embrace parallelisation 
techniques with the introduction of CPU multi-core threading, and SATURN 
has already implemented CPU multi-core parallel computing.  However, whilst 
each CPU thread has significant ‘clock’ speed they are limited in number with 
a typical modelling PC having a maximum of 20 threads.  With the concept of 
parallel computing within assignment models already established, Highways 
England has now turned to GPU-based technology as a potential way of 
creating a step-change reduction in traffic model runtimes.  GPU parallel 
computing has a number of differences to the equivalent CPU computing and, 
with a typical modelling mid-range PC, GPUs provides upwards of 8 TFLOPS 
(Terra FLoating point Operations Per Second) of theoretical performance in 
contrast with roughly 0.4 TFLOPS available in modern Intel Core i7-based 
processors. 

Preliminary investigations into serial and CPU multi-core execution have 
highlighted that the areas of the highway modelling process that currently take 
significant computer resources, in terms of memory and compute time, are 
associated with the assignment of traffic to the model network, and specifically 
focussed on tree building algorithms.  The processes used in SATURN, or 
more specifically the SATALL assignment ‘engine’, are typical of other 
macroscopic traffic modelling software and therefore any solution identified 
can potentially be applied more widely across the modelling industry.   
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To investigate SATALL GPU implementations Highways England and Atkins 
Limited (‘Atkins’) have co-funded the first major transport modelling 
collaboration between public and private sectors, bringing in support from 
Transport Systems Catapult (TSC), University of Sheffield (NVIDIA partner) 
and The Hartree Centre (high performance computing).  The team was 
challenged to find a step change reduction in runtimes in the first transport 
modelling application using GPU-based technology within the study’s six-
month timeframe. 

2. WHY USE GPU-BASED TECHNOLOGY? 

2.1 CPU and GPU-based technology  

Computing hardware has been increasing in speed at a rate largely 
represented by Moore’s law since 1965. However, it has slowed in recent 
years (reflecting the increasing difficulty in making transistors smaller) but 
reducing transport model runtimes remains a high priority due to the 
increasing number and size of large transport models enabled by generic, 
maintained datasets. This continuous need is reflected in the Moore's law 
compensator known as Wirth's law which is the principle that successive 
generations of computer software increase in size and complexity, thereby 
offsetting the performance gains predicted by Moore's law.   

To help continue Moore’s law a new definition of the law with greater 
collaboration between hardware and software may be necessary.  As the 
growth in CPU speed is no longer expected to continue at the same historical 
rate, re-thinking algorithms to be massively parallelised could allow highly 
scalable data-parallel computing to provide massive economies of scale.  This 
is unlikely to be achieved with CPU-based hardware as CPUs were primarily 
designed to execute serial code and extract maximum parallelism out of serial 
execution to improve performance. GPUs on the other hand are purpose built 
parallel computers which are fed parallel workloads. In fact the entire real-time 
graphics environment is designed around the massively parallel nature of 
GPUs.   Another relevant difference between CPU and GPU is cost. GPUs 
typically offer greater performance figures for lower cost and also lower power 
usage per FLOP. 

The approach to achieving continued step-change reduction in model 
runtimes is illustrated as three phases in computing technology Figure 1 
below.  The step change from CPU ‘serial’ to CPU ‘parallel’ computing is now 
well-embedded within the transport modelling software, including SATURN 
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Multi-Core for example.  This has generally involved relatively minor changes 
to the software to spread the workload over a small number of limited but fast 
cores operating in parallel.  Typically this might include spreading the 
workload over 12 cores, and retains the algorithms designed to optimise serial 
performance whilst minimising duplication in the parallelised code. 

Figure 1 Step Changes in Computing 

 

The step change from CPU parallel to GPU ‘accelerated’ computing is 
enabled through an even greater collaboration between hardware and 
software.  Accelerated computing improves the execution of a specific 
algorithm by allowing greater concurrency, and reducing the overheads 
associated with managing this greater concurrency.  As such the algorithms 
used must be suitable for simpler more repetitive calculations, with fewer 
iterative operations and less regard to wasted effort.  

In an accelerated system both the CPU and GPU play important roles.  The 
CPU, and general computing hardware, handles the operating system and 
provides the interface between the software, and the user and data, as well as 
managing the generic processes within the program.  Unlike in parallel 
computing, where the CPU will also handle the more demanding 
computations within the software, the nature of accelerated computing is to 
package-up the massively parallelisable computations and send these to the 
GPU, thus running independently of the CPU and general computing 
hardware, as shown in Figure 2 below.  
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As shown in the figure data has to be 
transferred to the GPU via the PCI 
express port.  Managing this transfer of 
data becomes an important aspect of the 
achievable speed in accelerated 
computing, due to the high memory 
latency of the PCI express port, and 
therefore a key area for investigation. 

The data transferred to the GPU needs 
to ‘parallel’ data so as to allow the tasks 
to be performed on the data to also be 
parallel.  It is therefore also important to ensure the data and the algorithm are 
consistently highly parallelisable throughout these key processes. 

2.2 Algorithmic changes 

It was also important to understand at an early stage the specific areas / 
routines in the SATALL code that were the most computational intensive.  
This was achieved by ‘profiling’ existing runs of the SATALL assignment / 
simulation.  This profiling confirmed that the bulk of the runtime was 
associated with the building of ‘paths’, with paths representing a series of 
nodes through the network to route from one network node to another.  It was 
possible to track the majority of the runtime to the path build algorithm, which 
uses the d’Esopo-Pape algorithm (which is not unusual for macro assignment 
models).  This confirmed that if the assignment algorithm, and the data fed 
into the algorithm, could be massively parallelised then a step-change in 
runtime may be achievable.  However, and as defined in Amdahl’s law, any 
serial aspects of the code will be the ultimate runtime constraint.  

A key decision for the algorithm is very much dependent on the choice of CPU 
or GPU due to the type of parallelism possible.  The first parallelism option is 
‘task parallelism’ where different threads are used for different tasks, and this 
is best suited for CPU parallelism. For example, if a system is running code 
with thread A and thread B, and we wish to do tasks X and Y, it is possible to 
tell thread A to do task X and thread B to do task Y simultaneously.  

The second option is ‘data parallelism’, which is best suited for GPUs and 
focuses on distributing the data across parallel computing and is achieved 

Figure 2 Relationship between 
CPU and GPU 
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when each thread performs the same task on different pieces of distributed 
data. For example, thread A and thread B can undertake the same task X on 
data D. It is possible to tell thread A to do task X on one part of data D and 
thread B on another part simultaneously.  Consider adding two matrices 
where Thread A could add all elements from the top half of the matrices, while 
thread B could add all elements from the bottom half.  Since the two threads 
processors work in parallel, the job of performing matrix addition would take 
one half the time of performing the same operation in serial using one thread 
alone.  If the matrix was say 5,000 zones, and there were 5,000 threads 
available, then each cell could be added simultaneously. 

Within the existing SATALL path-building routine the majority of serial 
execution is based on the Single Source Shortest Path (SSSP) computation, 
which can be done either using task parallelism using the existing d’Esopo-
Pape (or an alternative like Dijkstra), or in data parallelism, and using an 
alternative algorithm that is not focused on optimising serial processes. 

2.3 Hardware considerations 

Knowledge of likely hardware to be used can affect choices in optimising the 
code, via settings in the compiler, plus optimisation of the transfer of data 
across the PCI express port.  It was also considered important to identify a 
specific hardware setup that would be typically used by the RTM modelling 
consortia.  So, whilst a number of different graphics cards were tested, the 
main optimisation and testing was undertaken using the CUDA compute 
capability 5.0, optimised for the NVIDIA Titan X (Maxwell) GPU.   

The existing SATALL code uses Double Precision (DP) to accumulate link 
flow totals.  It was important to retain this precision to ensure stable model 
runs.  However, Maxwell GPU hardware such as the Titan X only offer 1/32 
DP performance compared to Single Precision (SP).  Whilst alternative cards / 
architectures can provide better DP performance, they were not within the 
agreed target price range for typical model users.  Accordingly, the project 
continued with this target hardware for investigating speed enhancements, 
and retaining flow accumulation accuracy became an additional area requiring 
investigation.  

3. EXISTING SATURN SOFTWARE 

3.1 Model structures 



                                                                                                                             
                            

© AET 2016 and contributors 
6 

The SATURN congested assignment model is a complex procedure in which 
successive attempts to find the quickest routes across the network for each 

journey (the SATASS stage) 
are interspersed with updating 
calculations about the 
conflicting volumes at each 
junction and the nature of the 
delays that are likely to be 
faced by each junction user (the 
SATSIM stage).  The overall 
process is illustrated in Figure 
3. 

Figure 3 SATURN assignment 
structure  

After several loops of this SATASS / SATSIM process, an equilibrium position 
is achieved in which traffic flows and junction delays are relatively stable in 
successive loops.  At this point, the SATASS / SATSIM process is deemed to 
have converged, little can be gained by carrying out more loops of the 
program and the results can be regarded as sufficiently robust.   

The SATURN Multi-Core add-on focuses on the SATASS only and 
undertakes the path building and loading as multi-threaded process for each 
origin.  The GPU-based technology focusses on the same processes. 

SATURN networks are coded as: ‘buffer’ to represent node / link topography 
and link based capacity restraint; and ‘simulation’ to represent junction 
capacity restraint.  SATURN includes an internal network aggregation called 
‘spider’ links that use network aggregation where links and / or nodes in the 
basic assignment network are combined together into an equivalent set of 
aggregated links / nodes with the objective of reducing the runtime required to 
carry out the basic assignment steps of path building. 

The three distinct steps in SATALL assignment include: route choice; 
accumulate flow; and cost skimming.  The route choice includes building 
SSSP, using an ‘all-or-nothing’ path build for each i-j pair.  The flow 
accumulation then applies the Tij trips to each link along the path.  The cost 
skim then accumulates the costs along a path associated with the flows on 
each link.  
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Figure 4 shows the runtime profile of the SSSP and flow accumulation 
(referenced ‘Flow’) in the context of running the London Highway Assignment 
Model (LoHAM) in serial execution.   

The route choice and building of paths was 
identified as taking 97.4% of the LoHAM 
runtime in serial execution, which was 
concentrated on calls to the SSSP algorithm.  
The profiling showed that the three routines of 
route choice, flow accumulation and cost 
skimming represented the highest 
computational demand and all three included 
the tree-build algorithm.  Within this algorithm, 
the highest demand was for the routine called 
Load-It, which was therefore investigated first. 

The SSSP algorithm finds the node based path for each single origin to each 
network node with the lowest cumulative travel cost. The SATURN SSSP 
algorithm is based on d’Esopo-Pape algorithm.  There are numerous other 
SSSP algorithms, including the popular Dijkstra, but d’Esopo-Pape was 
considered the best algorithm during the original SATURN development (and, 

with various optimisations, continues to perform 
very efficiently).   

Figure 5 SSSP algorithm 

Core to understanding the d’Esopo-Pape algorithm 
is that it maintains a ‘priority queue’ of nodes to 
explore shortest paths, which is common to all 
SSSP algorithms that are efficient when executed 
in serial.  The algorithm starts by initialising the cost 
back from each node to the origin to infinity with the 
exception of the origin, which is initialised to 0.   

In the example in Figure 5 the cost of getting to 
origin 0 is set to infinity for nodes 1 to 4.  In iteration 
1 the algorithm looks for connecting nodes, finds 
node 1 and updates the cost of access origin 0 
from node 1 to the associated link cost of 1 unit.  
Node 1 is then added to the ‘loose end’ array, 

Figure 4 SATALL Assignment 
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containing all nodes but prioritised by the cheapest cost first, which at this 
iteration will have node 1 first.  In iteration 2, the algorithm starts at the top 
priority loose end node of 1 and accumulates the costs from connecting nodes 
2, 3 and 4.  These nodes are then added to the loose end array, with node 2 
prioritised first with the shortest path of getting back to origin 0 of 1 + 2 = 3 
units.  The algorithm searches through the loose end table nodes in this way 
until all nodes have been visited, identified as the node cost back to origin not 
being infinity, with the shortest path stored in the ‘back node’ array.     

This is a highly serial process because the priority queue is processed in 
order.  As such d’Esopo-Pape is not massively parallelisable, and in particular 
data parallelisable, as required for GPU-based technology. 

The flow accumulation is, however, a parallel problem as each path from 
destinations back to a single origin can be processed concurrently.  However, 
when the link flow is accumulated this needs to be synchronised with the other 
concurrent paths, which presents additional computational speed restrictions.   

3.2 Test Models 

A number of real-life SATURN traffic models were required for testing 
purposes, representing a range of sizes to allow quick coding checks, and to 
provide evidence that the changes are likely to work for the RTMs.  As such 
four models were used as shown in Table 1 below, with the Central London 
HAM (CLoHAM) closest in size to the proposed RTMs. 

Table 1 Test model summary 

Model Size Zones 
User 

Classes 
Simulated 
Junctions 

Typical Runtimes 
(SATASS & SATSIM) 
Serial Multi-Core 

Epsom Test 12 2 17 1.6 seconds 1.4 seconds 

Derby Medium 547 13 3,686 0.47 hours 0.14 hours 

CLoHAM Large 2,548 5 12,932 4.18 hours 0.62 hours 

LoHAM Extra Large 5,194 5 25,575 15.4 hours 1.80 hours 

Hardware: Intel Core i7 2nd Gen Desktop (Four Core + HT)  

4. SOFTWARE DEVELOPMENT AND INTEGRATION 

4.1 Algorithm change 

The existing use of the d’Esopo-Pape algorithm, or indeed any efficient serial 
SSSP approach, needed to be changed as it is the focus for runtime demand, 
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and the scalable and step-change in runtime requires data parallelism to allow 
the best use of GPU-based technology. 

A literature review considered a number of SSSP algorithms that indicated a 
speedup potential in serial and alternative algorithms that could be 
implemented efficiently in a data parallel approach.  The literature review 
found a 2014 paper titled ‘Work Efficient Parallel GPU Methods for SSSP’ 
detailed efficient data parallel methods.  The methods discussed were 
implemented using the Gunrock library, developed by academics at the 
University of California, and which is relevant as it demonstrates the 
techniques could be implemented in a transport model.  A range of GPU 
accelerated node-link network processing algorithms were explored.  The 
paper showed that GPU accelerated methods out perform a heavily optimised 
Dijkstra implementation on a number of different networks.  Furthermore the 
Gunrock library promotes a high performance implementation of the Bellman-
Ford algorithm, which became the focus for this project.  

The Bellman-Ford algorithm iterates incrementally from 1, each time 
incrementing the number of nodes found in the shortest paths, and up to the 
total number nodes minus 1, which is the theoretical maximum number of 
times before the longest shortest-path has been found.  The key difference is 
that Bellman-Ford does not maintain a prioritised loose end array, as with the 
d’Esopo-Pape algorithm.  Instead each link in the network is considered at 

each iteration, ensuring that all connected 
shortest paths are found.   

Figure 6 Parallel SSSP Algorithm 

Both d’Esopo-Pape and Bellman-Ford 
algorithms produce the same output, which 
includes an array of back nodes and an array of 
back node costs, allowing a similar interface.  
Figure 6 shows the iterative algorithm on small 
example network.  For the origin node 0, all links 
are considered at each iteration, but only links 
coloured orange result in an update of the back 
node arrays, as it looks for the shortest path with 
the number of nodes indicated by the iteration 
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number.  Effectively iteration 4 is redundant but that is not known until it has 
been processed.   

As the Bellman-Ford algorithm evaluates all links in the network at each 
iteration, it is a poor candidate for serial or task-parallel execution as more 
efficient serial and task-parallel algorithms exist.  In the example Bellman-Ford 
considers 6 links at each iteration (24 links in total) to find the shortest paths, 
whereas D’Esopo-Pape only considers 6 links through the efficient use of a 
priority queue array.  However, Bellman-Ford is an ideal candidate for data-
parallel execution as each link can be considered simultaneously at each 
iteration. Furthermore, computing the shortest paths for multiple origin zones 
concurrently allows greater levels of parallelism to be exposed, making better 
use of the highly-parallel GPU hardware. 

4.2 Algorithm route choice development iterations 

The algorithm development was undertaken using data extracted from 
SATALL at the point of beginning a SSSP routine and the corresponding 
output, and the SSSP code extracted as the source for the first algorithm.  A 
simple harness would provide this data to the algorithmic code under test, 
without requiring recourse to SATALL.  This enabled a rapid turnaround in 
tests to enable early development of the new algorithm while integration and 
compiler issues were resolved.  An iterative agile process was followed to 
update the extracted SATALL software to introduce, and then optimise, the 
Bellman-Ford algorithm, with the first stage associated with the extracted 
Load-It route choice code.  The list below details each iterative change of the 
extracted Load-It code and Figure 7 below shows the speedup achieved.  

Iteration A1 – D’Esopo-Pape Serial  
D’Esopo-Pape algorithm in serial execution used for reference.   

Iteration A2 – Naïve Bellman-Ford  
Simplest possible implementation of Bellman-Ford with no optimisation.  As 
anticipated this resulted in a poor performance, to such an extent that it went 
off the scale in the runtime figure, as indicated by the striped bars. 

Iteration A3 – Bellman-Ford Early Termination 
Bellman-Ford will continue to iterate to a maximum number of iterations based 
on the number of nodes in the network minus 1.  However, it is not always 
necessary to undertake all iterations and therefore the code terminates if two 
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successive iterations have the same costs.  This provided good runtime 
improvements over the A2. 

Iteration A4 – Bellman-Ford Node Frontier 
Introduction of a node frontier - an array which contains the nodes updated in 
the previous iteration. Only links which leave nodes in the frontier array are 
considered, saving a considerable amount of work. Modest improvement over 
A3 but significantly slower than the reference runtimes from A1. 

Iteration A5 – Bellman-Ford Load Balancing 
Different nodes have different numbers of connected links. Instead of the links 
from a single node being processed by a single thread, a group of threads co-
operate to process the links from the group of nodes, balancing the workload. 
This change introduced little improvement over A4. 

Iteration A6 – Bellman-Ford All Nodes 
The existing D’Esopo-Pape and A5 Bellman-Ford algorithms stop at the node 
linking to the destination zone link connector, and then add the zone 
connector in serial after the path build. This change moves the destination 
zone into the process so it can be parallelised. This change introduced little 
improvement over A5, but increases the amount of serial code replaced. 

Iteration A7 - Bellman-Ford Larger Results Arrays for Multiple Origins 
The back node and back node cost arrays were increased in size to store the 
results for multiple origins. This enables multiple concurrent origins and also 
improved memory access. This change introduced little improvement over A6. 

Iteration A8 – Bellman-Ford Multiple Origins 
Parallelise and find the shortest paths for all origin zones concurrently. This 
provided the desired step-change in runtimes compared to the reference 
runtimes from A1. 

Iteration A9 – Bellman-Ford Dynamic Batching 
Origin batching was added to dynamically configure the data sent to the GPU 
to improve the use of memory and allow execution of models too large for a 
single GPU. This change introduced little improvement over A8. 

Iteration A10 – Bellman-Ford Improved Load Balancing 
Implemented a different search strategy to better optimise the load balance 
across threads.  This change introduced some modest improvements over A9. 
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Iteration A11 – Bellman-Ford Interleafed Back Node & Cost Array 
The back node and back node cost arrays were ‘interleafed’ to improve 
memory access patterns and reduce the number of atomic operations which 
add significantly to the runtimes.  Atomic operations are operations which are 
guaranteed to occur in order (serialised) and be required to avoid race 
conditions. Interleaved results allow a reduction in the number of atomic 
operations required and therefore a reduction in serialisation. This change 
introduced little improvement over A10. 

Other points to note following the improvements, but that were omitted from 
the Load-It code changes, are listed below. 

• GPU acceleration for non-spider networks was not implemented due to 
the complexities of ‘u-turns’ on the buffer-simulation network 
boundaries having significant performance impact on Bellman-Ford. As 
most networks will always use spider networks in the path build (for 
speed reasons and the default option) this was considered acceptable. 

• Memory must be initialised for each path build; asynchronous memory 
initialisation for large arrays typically makes full use of the GPU, 
leading to serial execution and a minor reduction in performance due to 
additional overhead costs. 

• Alternate back node storage with the interleaved back node array 
stored by origin and then node, i.e. |o1n1|o1n2|...|o2n1|o2n2|... could 
instead it could be stored |o1n1|o2n1|...|o1n2|o2n2|....  However, this 
did not improve overall performance but if the A4 frontier version was 
also modified to be interleaved it may result in a net increase. 

• Batching sets of origins for SSSP calculation would allow concurrent 

Figure 7 Route choice runtimes 
(Load-It extracted code) 
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batch execution allowing the GPU driver to better manage hardware 
availability, however doing so results in a greater number of expensive 
device-host data transfer over the PCI express port. The cost of the 
additional data transfer outweighs the benefits. 

• Dividing the main SSSP function into smaller units (as implemented in 
the Gunrock framework) would enable improved memory access 
patterns. This however results in a much larger memory footprint 
reducing the number of concurrent origins being processed on the GPU 
simultaneously. Early investigation led to a loss of performance due to 
the reduced level of parallelism.  

4.3 Algorithm flow accumulation development iterations 

Towards the last iterations of the optimisation of the Bellman-Ford route 
choice implementation the SATALL profile indicated that the runtime focus 
was moving from the route choice to the flow accumulation.  Figure 8 shows 
that for iteration A11 the flow accumulation represented the majority of the 
runtimes in the full SATALL code, and therefore this became the next focus.   

Figure 8 Distribution of runtime following A11 Bellman-Ford route 
choice implementation  

 

The flow accumulation process uses the shortest paths code produced by the 
Bellman-Ford algorithm from A11 with the origin-destination trip matrix to 
calculate the flow per link in the network for the current user class. For each 
trip in the matrix, the route is traced from destination back to the origin, 
accumulating the flow value as each link is encountered.  This process is 
performed on the GPU, with the challenge of providing a speedup whilst 
producing the results with the correct precision.   
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Unfortunately the GPU hardware (Maxwell) used during this project does not 
support a key atomic operation in hardware for DP floating point numbers. 
Two alternative solutions were investigated: firstly the use of SP for the 
accumulation of flow was investigated along with options for minimising the 
loss of precision; and secondly the use of parallel primitives to minimise 
expensive software-based atomic operations was investigated. 

Again an iterative agile process was followed to update the SATALL software 
to introduce, and then optimise, the Bellman-Ford algorithm, with the second 

stage associated with the flow 
accumulation to the array ‘Flow8’.  
The list below details each iterative 
change using the now integrated 
Load-It routine, of which the flow 
accumulation is part, and Figure 9 
shows the speedup achieved. 
   
Iteration A12 – Naïve DP Flow8  
Retains Flow8 DP on GPU hardware. 
Significant atomic operations to 
serialise execution result in poor 
performance compared to the serial 
A1 option.  

Iteration A13 – Naïve SP Flow8 
Unstable results so not reported. 
 

Iteration A14 – High-Low SP Flow8 on GPU 
Inspects the size of a trip and accumulates into two SP ‘buckets’, one for low 
size numbers and the other for high size numbers.  Model results are more 
stable with minimal loss of precision using multiple 32-bit summations 
equating to 0.000022% total error.  A significant speedup compared to A1.  

Iteration A15 – Improved DP Performance by Reducing Atomic 
Contention 
The use of atomic operations is ‘minimised’ by processing a single link of each 
trip at a time, sorting the required data and using parallel reduction, reducing 
the number of atomic operations required. A significant speedup compared to 
A1 was achieved with accurate results. 

Figure 9 Flow accumulation 
runtimes (SATASS 
integrated code) 
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4.4 SATALL integration development iterations 

The optimised Bellman-Ford algorithm implementation, including updates for 
route choice and flow accumulation, plus optimised integration, allowed three 
further development iterations to be created and tested within this project. 

The list below details each iterative change of the SATALL code, now referred 
to as the new SATGPU program, and Figure 10 and Figure 11 shows the 
serial and multi-core speedup comparison for Xeon Server (12 cores / 24 
threads) Titan X (Maxwell, 3072 cores, 1075 MHz, 12GB GDDR5). 

Figure 12 and Figure 13 shows the serial and multi-core speedup 
comparison for PC i7 (4 cores / 8 threads) Titan X (Maxwell). 

Iteration A16 – A11 with OpenMP Flow Computation on CPU 
Hybrid version of GPU for route choice and flow accumulation, plus a CPU 
OpenMP multi-core for outer user class loops (part of the supply segment 
loops).  However, the results unavailable due to unresolved integration issues.  

Iteration A17 – A15 with Improved DP Flow Compute  
First SATGPU release candidate and provides best DP results. 

Iteration A18 – A14 with Improved accuracy SP Results 
Second SATGPU release candidate and best runtime performance using SP 
with improved flow accumulation accuracy and stable model results. 

Figure 10 H1 - Server Xeon Titan X SATGPU serial runtime comparisons 
(total SATASS + SATSIM assignment integrated code) 

 
Figure 11 H1 - Server Xeon Titan X SATGPU multi-core runtime 
comparisons (total SATASS + SATSIM assignment integrated code) 
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Figure 12 H2 - PC i7 Titan X SATGPU serial runtime comparisons (total 
SATASS + SATSIM assignment integrated code) 

 
Figure 13 H2 - PC i7 Titan X SATGPU multi-core runtime comparisons 
(total SATASS + SATSIM assignment integrated code) 

 

4.5 Software Testing 
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The testing involved comparing a number of results and checking that certain 
rules were passed successfully.  Model stability was important, which was 
primarily measured using convergence stability, and helped show how the 
software could replicate previous results.  This was a particular issue for the 
flow accumulation as the use of SP, or DP emulation, was known to make the 
model outputs unstable.   

Furthermore the Bellman-Ford algorithm when implemented in parallel is not 
deterministic for networks with multiple, equal-cost shortest paths.  When a 
network contains multiple routes from A to B with equal cost paths there is no 
guarantee that one route will be selected over the other (or should there be). 
This could be resolved for single link variance with some impact on 
performance by checking the link ID of equal cost links and selecting the 
lowest / highest value. This does not resolve routes with multiple link routes 
with equivalent costs - the alternate route with an equal cost path will not be 
considered due to how the frontier propagates one link at a time. A way to 
resolve this issue was not found without a significant impact on performance.  
However, if the model was fully converged then stable results compared to the 
reference case were achieved.  No convergence or stability issues were 
encountered except for the use of SP in the flow accumulator.  Table 2 below 
contains the CLoHAM convergence summary for software version A15. 

Table 2 Software version A15 CLoHAM convergence summary 

Measure / Criterion 
Multi-Core 
(Reference) 

A15 
(GPU) 

%Diff 

Convergence 

Stability (%Flows) 98.5% 98.8% 
 

Stability (%Delays) 99.3% 99.4% 
 

Proximity (%GAP) 0.009% 0.009% 
 

Summary 
Statistics 

Total Distance (pcu-km) 2,522,793 2,522,916 0.00% 

Total Time (pcu-hrs) 114,903 114,918 +0.01% 

Total Delays (pcu-hrs) 4,370 4,369 -0.02% 

It was important to not only benchmark each software version against a 
reference case but to also repeat a full model validation.  As such an existing 
LoHAM calibration and validation analysis was successfully repeated as 
shown in Table 3 below. 

Table 3 Repeat of LoHAM validation 
Measure / Criterion Aspiration Multi-Core A15 Diff 
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(Reference) (GPU) 

Links - GEH <5 85% 64% 64% 0% 

Links - GEH <7.5 85% 78% 78% 0% 

Links - DMRB Flow Criteria 85% 74% 74% 0% 

Screenline - Flow Difference <5% 85% 90% 90% 0% 

Enclosure - Flow  Difference <5% 85% 94% 96% +2% 

Mini screenline - GEH <5 85% 91% 91% 0% 

JT Routes - Time Difference < 15% 85% 92.1% 92.6% +0.5% 

Links - GEH <5 85% 64% 64% 0% 

 

 

5. NEXT STEPS 

5.1 Potential for further runtime improvements 

During the commissioning and early stages of this project it was confirmed 
that to achieve a step-change runtime reduction that the SATALL code 
needed to become massively data parallel, and that the most likely future 
platform to provide continued improvement in computational speed was 
through the use of GPU-based technology.  This first phase therefore 
investigated whether there is potential to use GPU-based technology to 
improve the runtimes of a traffic assignment model.  This has been achieved 
by moving sections of the code that contain the path build onto a single GPU 
device.  The areas for further investigation are discussed below and include: 

• further algorithmic optimisation; 

• scaling and improvements in hardware; and 

• investigating other serial processing within the existing code. 

5.2 Future algorithmic optimisation 

Potential future optimisations have been identified but not implemented during 
this first phase, as listed below. 

• SSSP priority queue - process network nodes in two stages, with the 
likely-update nodes before less likely (see Gunrock Delta stepping). 
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• SSSP for origins with trips - an optimisation from the original Load-It 
routine.  If an origin has no trips, do not compute the SSSP.  However, 
this scenario was not present in any of the test models. 

• Additional asynchronous compute / data transfer - perform more 
operations asynchronous to other work. 

• Reduced ‘pinning’ of memory - pinning memory has a cost. If the 
flow data could be pinned once and only once this would improve 
performance. Initial investigations resulted in model instability. 

• Block-level sorting for flow accumulation - flow accumulation 
currently suffers from poor memory access patterns. A global sort to 
improve this costs more than it gains, but doing a block level sort 
should improve performance, and for both DP and SP variants. This 
only applies to Maxwell based GPUs. 

• Improved SP – the performance offered by SP flow accumulation 
compared to DP on Maxwell based GPUs and earlier is considerable. 
Techniques to reduce the loss of precision could be implement to 
produce a SP solution with no or minimal loss of precision compared to 
using DP (Kahan Summation, etc.). 

• Improved support for devices with limited memory - large networks 
may suffer runtime constraints on GPUs with fewer cores / memory 
than tested during this initial project. The flow accumulation method 
may need modifying to account for very large trip matrices on these 
smaller devices, by batching the number of trips being traced 
concurrently. 

• Minimise data transfer - data is copied from host memory to GPU 
memory many times throughout the application runtime. This data 
transfer over the PCI express port is relatively slow and costly in terms 
of runtime. On GPUs with sufficient memory the majority of these data 
transfers could be performed once and only once, greatly reducing the 
time spent transferring data. 

• Multiple GPUs for stochastic simulation – parallel SSSP for 
alternate route networks is non-deterministic. By launching the same 
simulation many times on multiple devices the costs of file input / 
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output, etc., are minimised, while allowing multiple runs to be 
aggregated / analysed. 

• Process multiple user classes concurrently – in the test networks, 
up to thirteen user classes are processed serially one after the other. 
Each user class is essentially independent when the flow is 
accumulated, so multiple user classes were processed concurrently 
significant gains in performance could be achieved (potentially up to ‘n’ 
user classes provided sufficient memory and compute is available). 

• Modified spider network generation - the generation of spider 
networks from non-spider networks could be modified to produce 
networks which are better suited to GPU based processing. Denser 
networks with a lower ‘diameter’ will result in increased performance. 

5.3 Scaling and improvements in hardware 

This first phase has demonstrated the use of a single GPU to accelerate the 
assignment phase of SATALL, optimised for the Maxwell Titan X. These new 
data-parallel methods can be scaled up to process more data concurrently 
and, where required, scale across multiple GPUs to take advantage of the 
increasingly large computational power available at relatively low cost. 

For the smaller models a single user class does not fully occupy a GPU. 
Launching the assignment operations for multiple user classes on a single 
GPU concurrently would further reduce the run-time of the application and 
also pave the way for subsequently undertaking multiple user classes on 
multiple GPUs. Using multiple GPUs for a single application would provide 
benefit to larger models which occupy a much greater portion of the resources 
of a single GPU. This could reduce the runtime of assigning all the user 
classes to the time taken to assign the longest running user class. On a single 
GPU each user class would be assigned to its own CUDA streams, which the 
CUDA runtime intelligently handles on a single GPU. Across multiple GPUs 
built-in CUDA functions would select the appropriate device for each user 
class prior to the assignment algorithm launch to load-balance the system. 

For very large models, greater in size than the largest known SATURN 
network used in this project, the assignment process for a single user class 
may not fit on a single device, although the processing would be batched. 
Changes to the assignment code could exchange data between multiple 
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GPUs at the beginning and end of assignment iterations as they separately 
perform the assignment on different subsets of the same user class. 

A single PC workstation will typically support two to four GPUs, although 
configurations of up to eight are available. This approach to scaling therefore 
becomes limited by the number of user classes and size of the model, limiting 
the runtime reductions when multiple GPUs can be used asynchronously for 
parallel user classes on multiple GPUs. This issue may not be reached, as for 
LoHAM and RTMs the largest single user class comfortably fits on a single 
Titan X GPU device. However, if models bigger than LoHAM are encountered 
then further scaling could be achieved by accessing a large compute cluster. 

At the cluster-level, the programming model must change slightly as 
communication between the different nodes of a cluster must be performed 
explicitly. Message Passing Interface (MPI) would be used to communicate 
data between different GPUs, but otherwise the methodology outlined 
previously would hold true. As well as the benefit of improved performance by 
splitting user classes across many GPUs, an MPI-enabled multi-GPU 
implementation would allow SATGPU to handle network sizes far larger than 
those currently available, and are planned for the foreseeable future. 

A performance limiting factor for the flow accumulation code in DP is the 
atomic add operation in DP. Up to the Maxwell Titan X architecture the DP 
atomic add is not implemented at the hardware level. Instead it must be 
implemented in software, the method of doing so is not ideal and the issue 
compounds as more atomic operations are required, i.e. larger models. This 
has a significant negative impact on performance and therefore a much more 
complex flow accumulation method was implemented for this phase. The 
newer Pascal GPU architecture combined with the latest version of CUDA 
(CUDA 8.0) does include this instruction at the hardware level. This offers 
significant performance gains compared to the solution used for 
Maxwell based GPUs, with early work suggesting a further assignment 
speedup of up to 2x compared the Maxwell GPUs already demonstrated.  

5.4 Investigating other serial processing 

Amdahl’s law correctly identifies that the serial processes within the SATGPU 
program run will constrain the overall runtime improvements.  This phase of 
the project has focused on the traffic assignment as the highest computational 
element of the existing SATALL runtime.  However, current runs of the RTMs 
are now indicating that the junction simulation are equalling or even exceeding 
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the runtimes of the assignment.  So a clear focus for future development is to 
also parallelise the simulation code.  This could start with CPU parallelisation 
but, following this project, it seems more likely that a GPU implementation 
could provide more significant longer term improvements.   

Achieving massive data parallelisation in the simulation code could require 
algorithmic changes.  However, starting with a simple implementation on GPU 
could provide quick and significant runtime improvements, and would also 
provide the building blocks for further improvements. 

6. CONCLUSION 

There is no doubt that, in an attempt to find efficiencies, authorities are 
moving to larger transport models that can be used across many schemes, 
and that further modelling requirements for bigger and more complex models 
will continue.  Previously this has not been a practical option due to data and 
model runtimes.  With the advent of generic maintained datasets, and 
contemporary datasets like mobile phone data and GPS data, this information 
is now enabling the creation of larger models, both regional and national.  
However, whilst there has been significant improvements in computer 
hardware power and affordability, for example ‘blade’ servers, as well as 
significant improvements in CPU based multi-core parallelisation, model 
runtimes still remain a major constraint for the growing size of models. 

Our research has indicated that, irrespective of the hardware, the first task of 
making the software massively data parallelisable is achievable.  This is a 
significant task as the algorithms that may have been the most efficient for 
serial, and task parallelism, may not be the best for data parallelisable.  This 
project has shown this is possible by successfully replacing the D’Esopo-Pape 
path build algorithm with the Bellman-Ford algorithm.  The project has 
demonstrated that through a number of optimisations the Bellman-Ford 
algorithm can achieve the require step-change in assignment modelling 
runtime.  And this is irrespective of the wasted computation, which is now 
affordable due to the abundance of threads available on the GPU device. 

The optimisation of implementing the GPU-based technology was bespoke for 
each instance of the path build algorithm.  This included exploring the best 
options for the computationally slow flow accumulation using either: DP 
numbers and achieving a high level of stability; or emulating the flow 
accumulation with SP or approximation of DP, and achieving varying levels of 
stability.  The outcome of the implementation of Bellman-Ford is not only 
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highly stable but has also been shown to successfully reproduce the existing 
LoHAM validation, one of UK’s largest models covering Greater London. 

With the principle established that data parallelism is now possible, the 
problem then becomes about scaling across multiple GPUs, and importantly 
that the copying of data across the PCI express port ‘bottle neck’ can be 
achieved asynchronously across multiple GPUs.  The larger the model the 
more efficient this transfer becomes, and the denser the network the more 
efficient the Bellman-Ford implementation becomes, meaning this approach is 
well aligned to meeting the runtime challenges faced by the direction of 
change of increasing model size and complexity. 

This report indicates that the shippable SATGPU program from this project, 
with a single Maxwell Titan X for the largest models, can be expected to 
achieve up to 5x faster than PC based multi-core and up to 30x faster than 
serial.  And the advances in the new Pascal Titan X (August 2016) further 
demonstrates that GPU-based technology is most likely technology to 
maintain Moore’s law, and provide affordable and substantial increases in 
speed due to its energy efficiency and cost. 
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