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Abstract 

A general deterministic process models is described, for carrying out an 
equilibrium stability analysis, concerning both identification of attractors 
different from fixed-points and of bifurcations.   
Main goal of this paper is to show that stability of equilibrium cannot be given 
for granted, in other words the equilibrium approach to demand assignment 
may fail to describe the state of the system relevant to analysis and design.  
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1.   INTRODUCTION 

Assignment models, which simulate demand-supply interaction, are the basic 
tool to analyse and design transportation networks. Most existing models, and 
those commonly adopted in practical applications, follow an equilibrium 
approach, where it is assumed that mutually consistent flows and costs well 
describe the state of the system relevant for analysis and design (a recent 
review in Cantarella and Cascetta, 2001). More general models, derived from 
dynamic process theory, explicitly simulate the evolution over time of the 
system, and the convergence to different types of attractors (a general 
framework in Cantarella and Cascetta, 1995; see also Cascetta, Coppola, 
Adamo, 2000).  

Dynamic process models include an explicit simulation of user cost and 
choice updating processes underlying system evolution over time. Several 
authors  have contributed to this increasingly interesting field through applying 
and analysing deterministic process models (main references are Smith, 
1984; Horowitz, 1984; Cantarella, 1993; Cantarella and Cascetta, 1995) 
derived from discrete-time Non-Linear Dynamic Systems Theory (see among 
many others Glendinning P., 1999). Some authors have also proposed 
stochastic process models (Cascetta, 1989; Davis, Nihan, 1993; Hazelton, 
2002; Watling 1996, 1999, 2002).  

In this paper, a general deterministic process models is described, such that 
the equilibrium pattern is a fixed-point state. A simple but effective approach, 
based on exponential smoothing, is followed to model both user cost and 
choice updating processes. Then, conditions assuring the stability of a fixed-
point state, which means that it is an attractor, are analysed with respect to 
main parameters, such demand, behaviour dispersion, derivatives of link cost 
functions, etc. as well as habit and yesterday experience weight. Presented 
theoretical expectations are confirmed by results obtained from numerical 
simulations  for small networks, reported in previous papers (Cantarella, 
Velonà, 2000, 2001 e 2002).  

First, main notations and basic definitions are introduced together with basic 
data concerning small examples addressed through the paper (section 2). 
Then conditions about parameters to assure fixed-point stability (section 3) 
are discussed, and a bifurcation analysis is carried out for fixed-point 
attractors, to investigate the type of attractor that may occur when a fixed-
point state loses its stability (section 4). Relationship with equilibrium 
uniqueness conditions has also been discussed. Attractor identification 
through Poincarè characteristic multipliers is also briefly addressed (section 
5), The results in this paper indicate that the equilibrium approach, which does 
not allow for an explicit stability analysis, may fail to effectively described the 
state of the system relevant to analysis and design.   



© Association for European Transport 2003 

2.   DYNAMIC PROCESS MODELS 

In this section first main notations and basic definitions about discrete-time 
non-linear dynamic systems are introduced after a briefly review of the 
mathematical background. 

2.1.  Mathematical background 

A discrete-time non-linear dynamic system, also called a deterministic 
process, can be described by a recursive equation:  

 xt = ϕ(xt-1; θ)   
where 
xt ∈ X are the state variables, which describe the state of the system at time t 

within the feasible state set or state space X, x0 being the starting state; 
θ are the control parameters of the system; 
ϕ(•) is the transition function. 
 
A dynamic system is called globally (or partially) dissipative if the state space 
(or a sub-set of it) tends to reduce to a null measure set, that is a set with a 
dimension smaller than the state space, called an attractor. More formally a 
subset  A of the state space X is an attractor if: 

• A has a dimension less than the state space X ⊆ ℜn, 
• starting within A the system state may not exit A,  
• there exists a proper super-set BA of A, called basin, such that starting 

within BA the system state tends to A, 
• A is minimal, that is it does not properly contain any sub-set with the above 

features. 
 
Assuming that the transition function is continuous with its first partial 
derivatives, its Jacobian matrix J(xt) = Jac[ϕ(xt)] can properly be defined. In 
this case a necessary condition (also sufficient for known dynamic non-linear 
systems, even though no formal proof exists to author’s knowledge) to a 
system being dissipative over all the space state, is that the determinant of 
Jacobian matrix is less than one for any state, |Jac[ϕ(x)]| < 1, ∀ x ∈ X (see 
Thompson and Bishop, 1994, for a bi-dimensional system). 

Four main types of attractors can be observed, according to taxonomy in the 
following table. Examples are given in figures below. 

Type # of states Dimension Geometry 
fixed-point 1 = 0 One point 
k-periodic k = 0 Several points 
quasi-periodic ∞ > 0 integer Torus 
a-periodic ∞ > 0 non-integer Fractal 
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A fixed-point attractor is made up by a single state x* = ϕ(x*), and as such it 
may be considered a special case of k-periodic attractor: xt  = ϕk(xt−k). 
Moreover, it should be noted that a fixed-point state may well not be an 
attractor, since it may occur that no basin exists for it. 

Fixed-point, k-periodic and quasi-periodic attractors are non-chaotic, meaning 
that two evolutions starting close (enough) remain close; the system state 
evolves toward any of them through successive contraction over all directions. 
An a-periodic attractor is chaotic (for known dynamic non-linear systems, even 
though no formal proof exists to author’s knowledge), that is however close 
two evolutions start they will greatly diverge after some time; the system state 
evolves toward it through successive contraction on some directions and 
stretching and folding on others, even though contracting as whole. 

2.2.  Dynamic process models for traffic assignment 

Dynamic process models for traffic assignment refer to given period of the day 
(for instance morning rush hour in a working day)  and studies the evolution 
form one day to next one of flows and costs, due to user updating of 
forecasted costs and choices. In this paper an exponential smoothing 
approach is followed to specify the transition function (a general framework in 
Cantarella and Cascetta, 1995). 

The transportation supply is assumed modelled through a network, with m 
nodes, including an origin and a destination node for each considered traffic 
zone, and n arcs. Each day t, users are faced with path choice (as well as 
other choices such as mode, not addressed here for brevity’s sake). At this 
aim users are assumed grouped into classes, each class i with the same 
origin−destination pair, sharing a common set Ki of available paths as well as 
any other behavioural characteristics. Paths are assumed numbered in such a 
way that a path k ∈ Ki is univocally associated to a class i . let 

0

0.1

0.2

0.3

0 0.1 0.2 0.3 x

y
4-periodic 

-1.5

-1

-0.5

0

0.5

1

1.5

-0.5 -0.3 -0.1 0.1 0.3 0.5

x

y a-periodic 



© Association for European Transport 2003 

 
di ≥ 0 be the demand flow for user class i; 
yt ≥ 0 be the vector of path flows at day t, made up by a sub-vector yt,i for each 

class i, with 1T yt,i = di; the feasible path flow set being clearly compact 
(since bound and closed) and convex, as well as non-empty if at least 
one path connects each user class (sets Ki are non-empty); 

xt ≥ 0 be the vector of forecasted path cost at day t, made up by a sub-vector 
xt,i for each class i; they are the result of user memory and learning; 

gt ≥ 0 be the vector of actual path cost at day t, made up by a sub-vector gt,i 

for each class i. 
 
Several approaches can be followed to specify cost updating process (a 
general framework in Cantarella and Cascetta, 1995). A simple but effective 
approach is based on exponential smoothing, which can lead to effective as 
well as easy to handle models: 

 xt = β gt-1 + (1 - β) xt-1  
where 
β ∈ (0,1] is the weight given to yesterday actual costs when forecasting costs 

today, β = 0 meaning no updating at all. 
 
Path flows affects actually path costs due to the network structure: 

 ft = ∆ yt         
 ct = c(ft)          

 gt = ∆T ct          

where 
∆ is arc-path incidence matrix, made up by a sub-matrix ∆i for each class i; 
ft ≥ 0 is the vector of arc flows at day t;  
c(•) is the link cost flow (vector) function, assumed  continuous with its partial 

first derivatives;        
ct ≥ 0 is the vector of actual arc cost at day t. 
 
A exponential smoothing approach can be also followed to specify the choice 
updating process (a general framework in Cantarella and Cascetta, 1995): 

 yt = α D p(gt)  + (1 - α) yt-1 
where 
α ∈ (0,1]  is the probability of reconsidering the previous day choice (but not 

necessarily change it), α = 0 meaning no updating at all. 
D is the (diagonal) flow demand matrix with as many row or columns as paths, 

and a block (mi x mi) D[i] = di I for each user class i; 
p(•)   is the path choice model, which expresses today path choice 

probabilities for user who have reconsider yesterday choice, for instance 
well-know Logit or Probit models. 

 
By combining all the above equations a dynamic process model is obtained, 
which can be reformulated with respect to arc flows and forecasted costs: 
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 z t = β c(ft) + (1 - β) z t-1     (1) 
 ft = α f(z t)  + (1 - α) ft-1     (2) 
 
where: 
z t ≥ 0 is the vector of forecasted arc costs at day t;  
f(•) = ∆ D p(∆T •)  is the so-called network loading function between arc costs 

and flows  (expressing the assignment to an un-congested network). 
 
The system state is described by n + n variables, z t  and ft, the control 
parameters are those describing dynamic evolution, α and  β, together with 
those within the cost-flow function, such as arc capacity and the like, and the 
network loading function, such as demand level, path choice parameters, etc. 

The feasible arc flow set shows the same features of the feasible path flow 
set. Due to continuity of cost-flow function the feasible arc or path cost sets 
may be considered non-empty and compact, usually their convex closure is 
considered to get convexity. Generally, costs are considered non-negative. 

Assuming that the cost-flow function, c(•), and the path choice model, p(•),  
are continuous with their first partial derivatives, their Jacobian matrices can 
properly be defined: Jc = Jac[c(•)] and Jp = Jac[p(•)]. Then, the (2n×2n) 
Jacobian matrix of the transition function, J(z t, ft,) can properly be defined as: 

(1 - β)I β Jc J(z t, ft,) = 
α (1 - β) Jf (1 - α) I +  αβ Jf

 Jc 
= 

 
I 0 (1 - β)I β  Jc 

α Jf (1 - α)I 
x 0 I 

where 
Jf = ∆D Jp ∆T is the Jacobian matrix of the network loading function. 
 
It is worth noting that if the network is not congested, Jc = 0, or the users' 
choice behavior is completely random and thus does not depend on costs,   
Jp  = 0, the Jacobian matrix J at any point is triangular. In this case the 
eigenvalues of J are given by entries on main diagonal, (1 - αk) or (1 - βk), 
and, having assumed αk ∈ ]0,1] and βk ∈ ]0,1] the fixed-point is always stable. 

The determinant of J(z t, ft,) is given by (1 − α)n (1 − β)n ∈ [0,1) since α∈(0,1]   
and β∈(0,1]. Hence the above system (1-2) is dissipative over all the space 
state, that is, as said above, it will converge to an attractor whichever the 
starting state. This consideration rules out the conditions α = 0 or β = 0. 

The fixed-point states, (z*, f*) of the system (1-2), not necessarily attractors, 
are given by: 

 z* = β c(f*) + (1 - β) z* 
 f* = α f(z*)  + (1 - α) f* 
or 
 z* = c(f*)  and  f* = f(z*) 
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It turns out to be equivalent to the well-known Stochastic User Equilibrium 
(SUE): f* = f(c(f*)). It should be noted that the dynamic control parameters, 
α and  β, do not affect fixed-point states nor their existence and uniqueness.  

2.3.  Applications to simple networks 

In this paper two simple applications referring to a two-link network or a three-
link network are considered 

A Logit path choice model is used in both cases: 

 pj(g) = exp(- θgi)/ ∑j exp (- θgj) 
where 
θ = π /(61/2σ) ≅ 1.282/σ > 0 and σ is the standard deviation of random residual, 

assumed independent of costs; so far the greater it is the less stochastic 
the user choice behaviour is. 

 
Since the above choice probabilities  actually depend on difference between 
path costs, rather than their values, one or two arc costs are enough to 
describes the cost pattern for a two- or a three-link network respectively. 
Moreover, due to demand conservation constraint one or two arc flows 
respectively, are enough to describes the flow pattern. Thus, the 
corresponding Jacobian matrix has two null eigenvalues. 

The Logit scale parameter, θ, acts as a control parameter. In addition a 
demand level parameter, δ ≥ 0, will be referred, δ = 1 meaning saturation. 
Details about cost-flow functions are in (Cantarella e Velonà, 2000 and 2002). 
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3.   STABILITY ANALYSIS OF FIXED-POINT STATES 

Even though existence and uniqueness of a fixed-point state can be assured 
(see Cantarella, 1997 for a discussion about sufficient conditions), if it is not 
(locally) stable the system may still evolve towards a different attractor, unless 
the starting state is the fixed-point (or equilibrium state) itself and no 
fluctuations, however small, occur. Thus, in this section, sufficient conditions 
concerning (local) stability, obtained from non linear dynamic system theory, 
will be presented. 

3.1.  Mathematical background 

A fixed-point is (asymptotically−locally) stable if from any (sufficiently close) 
starting state the system state tends to the fixed-point as t tends to infinity 
(Wiggins, 1990).  

Assuming that the transition function is continuous with its first partial 
derivatives, its Jacobian matrix J(xt) =Jac[ϕ(xt)] can properly be defined. In 
this case, given a fixed-point, x*, and the Jacobian matrix, J* = Jac[ϕ(x*)], the 
fixed-point, x*, is stable, if all the eigenvalues of the Jacobian matrix J* have a 
modulus strictly less than one (see among others Wiggins, 1990): 

 |λj| < 1      ∀j or  maxj |λj| < 1 
 
where  
λj is one of the eigenvalues of the Jacobian matrix J*. 

Hence, the stability region for eigenvalues λj is the interior of the unitary circle 
on the (Argand) complex plane: 

 (λR,j)2 +  (λ Im,j)2  < 1 
 
where 
λR,j is the real part of the eigenvalue λj; 
λγlm,k is the imaginary part of the eigenvalue λ. 
 
if some eigenvalues have a modulus equal to one, maxj |λ j| = 1, stability 
should be studied through a second order analysis. This condition holds when 
a bifurcation occurs (see next section), clearly it is not structurally stable, say 
it vanishes with small changes of control parameters.  

Generally, fixed-point stability should be studied by explicitly computing the 
Jacobian matrix at the fixed-point, and then its eigenvalues, since no general 
expression exists relating the eigenvalues of a matrix to its entries.  
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3.2.  Stability analysis of equilibrium pattern 

The above introduced conditions about fixed-point stability can be applied to 
the equivalent Stochastic User Equilibrium (SUE), considering the exponential 
smoothing dynamic process model described in sub-section 2.2.   

In order to separate the effects of the dynamic control parameters, α and  β, 
from those of the other control parameters, let us consider the (n×n) matrix:  
G =  Jf

 Jc = =  ∆D Jp ∆T Jc within the Jacobian matrix J; it is clearly independent 
of the dynamic control parameters, α and  β, whilst it depends on all the other 
control parameters, through the cost-flow function and the path choice model. 
It can be shown (Cantarella and Cascetta, 1995) that for each eigenvalue γk of 
matrix G two eigenvalues of  matrix J can be defined λ’k = λk and  λ’’k = λm+k: 

λ’k  = [(1 - α) + (1 - β) +  α β γk - (χk)1/2] / 2 
λ’’k  = [(1 - α) + (1 - β) +  α β γk + (χk)1/2] / 2 

 
where 
 χk   = [(1 - α) + (1 - β) +  α β γk]2 - 4(1 - α)(1 -  β)  
 
With reference to the Jacobian matrix J* at the fixed-point (z*, f*), from the 
above equations the stability region for eigenvalues γk is the interior of an 
ellipse on the (Argand) complex plane: 

 ((γR,k - 1) + eR)2 / (eR)2  +  (γ Im,k)2 / (eIm)2 < 1 
 
where 
γR,k is the real part of the eigenvalue γk; 
γlm,k is the imaginary part of the eigenvalue γk; 
eR = [1 + (1 - α)(1 - β)] / (αβ)  ≥  1   is  the real semi-axis: 
eIm = [1 - (1 - α)(1 - β)]  / (αβ)  ≥  1   is the imaginary semi-axis. 
 
It turns out that two conjugate complex pairs of eigenvalues of J correspond to 
a conjugate complex pair of eigenvalues of G, whilst two real eigenvalues of J 
or a conjugate complex pair of eigenvalues may correspond to a real 
eigenvalue of G, as shown in figure below. 
 
The ellipse depends on parameters α and β; the smaller parameters α and β 
are the greater the area within the ellipse is. It is worth noting that the effect of 
parameters α and β is symmetric, say they can be exchanged without 
affecting results.  

In any case, the ellipse is symmetrical with respect to real axis, and cut it at  
γR,k = 1 and γR,k = 1 − 2eR ≤ 0. Hence, if any eigenvalue of G has real part 
greater than one, ∃k γR,k >1, the fixed-point will be unstable whichever the 
values of  parameters α and β. On the other hand if all the eigenvalues of G 
have real part less than one, γR,k >1  ∀k, there always exist small enough 
values of parameters α and β to assure stability. 
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3.3.  Applications to simple networks 

Some small examples of the application of the analysis carried out in sub-
section 3.2 are discussed below. It is worth noting that the same qualitative 
behaviour would be observed in a real-size network, since stability is lost with 
respect to one real eigenvalues (or a conjugate complex pair) at time. 

Results for a two-link network are discussed below, with  α = 0.25, β = 0.90,     
δ = 0.40,  θ = 0.22, 0.28, 0.40, the starting state resulting irrelevant. Figure 1 
below reports the two non-null eigenvalues λ of J, the evolution over time of 
the system, and the attractor over the state space plan, given by one arc flow 
and one arc cost (as highlighted in sub-section 2.3). Both the eigenvalues λ 
are real, and depending on the value of parameter θ  three cases occur:  
i) the fixed-point is stable, both the eigenvalues are within the unitary circle; 
ii) the fixed-point is non-stable, only one eigenvalue is inside the unitary circle, 

the system evolves towards a 2 -periodic attractor; 
iii) the fixed-point is non-stable, only one eigenvalue is inside the unitary 

circle, the system evolves towards an a-periodic attractor. 
 
Results for a three-link network are discussed below, with  α = 0.98, β = 0.98,     
δ = 0.4,  θ = 0.010, 0.015, 0.018, The starting state resulting irrelevant.  Figure 
below reports the two non-null eigenvalues γ of G, the evolution over time of 
the system, and the attractor over the flow space plan. The two eigenvalues γ 
occur in a complex conjugate pair, depending on the value of parameter 
θ  three cases occur.  
i) the fixed-point is stable, the two eigenvalues are within the stability ellipse; 
ii) the fixed-point is non-stable, the two eigenvalues are outside the stability 

ellipse, the system evolves towards a quasi-periodic attractor; 
iii) the fixed-point is non-stable, the two eigenvalues are outside the stability 

ellipse, the system evolves towards a 2-periodic attractor. 
 
Similar results can be obtained by changing any other control parameter. 
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Figure 1: examples for a two-link network 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: examples for a three-link network 
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4.   BIFURCATIONS ANALYSIS OF FIXED-POINT STATES 

A bifurcation occurs when small changes of control parameters determines 
relevant qualitative variations of the type of system evolution over time. For 
instance, as shown in the previous section, a stable fixed-point may become 
non-stable and a different type of attractor occurs. This section discussed a 
full bifurcation analysis (for fixed-point attractors only) formally supporting 
results of the examples reported in the previous section, where (sufficient) 
conditions for (local) stability of fixed-point states have been discussed. 

4.1.  Mathematical background 

Following a change in one (or more) control parameter a stable (in the sense 
defined in sub-section 3.1) fixed-point state may become non-stable if an 
eigenvalue λk of J gets a modulus greater than one,  |λk| > 1; this condition 
can be reached through three different ways (see for instance Wiggins, 1990). 

• One negative real eigenvalue λk of J become less than minus one: λk < −1; 
as the eigenvalue become smaller and smaller first 2-periodic, 4-periodic, 
8-periodic, … attractors can be observed then an a-periodic one occurs, flip 
bifurcation (the sequence is described by the Feigenbaum cascade, see  
Thompson and  Stewart,1986). 

•  The modulus of one complex conjugate pairs of eigenvalues λk, λk+1 of J 
become greater than one: |λk| > 1 and |λk+1| > 1; a quasi-periodic attractor 
can be observed, Neimark bifurcation. 

• One positive real eigenvalue λk of J become greater than one: λk > 1; in 
this case, for dissipative systems, two different fixed-point attractors occur, 
pitchfork bifurcation (for non-dissipative systems other bifurcations can be 
observed, see Thompson and Stewart 1986). 

 

 

 

 

 

 

 

Clearly as the modulus of an eigenvalue becomes greater and greater than 
one, the moduli of other eigenvalues may be become greater than one. In this 
case the above described bifurcation may mixed together. 
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4.2.  Bifurcation analysis of equilibrium pattern 

The three types of bifurcations discussed in the previous sub-section can be 
observed with reference to the fixed-point state of a dynamic process model 
for traffic assignment. The analysis can be carried out with reference to the 
eigenvalues γk of matrix G with respect to the elliptical stability region, 
introduced in sub-section 3.2. 

• Flip bifurcation:  2-periodic, 4-periodic… attractors then an a-periodic one,  
when γk < 1- 2eR for a real eigenvalue γk; 

•  Neimark bifurcation:  quasi-periodic attractor, when |γk| > 1 and |γk+1| > 1; 
for a complex conjugate pairs of eigenvalues γk, γk+1;  

• Pitchfork bifurcation: two new fixed-point attractors, when  γk > 1 for a real 
eigenvalue γk. 

 

 

 

 

 

 

 

Under  mild assumptions (see Cantarella, 1997) the network loading function, 
f(c), has a symmetric semi-definite Jacobian matrix, Jf, in this case conditions 
on the Jacobian matrix, Jc, of the cost-flow function, c(f), may rule out some of 
the above presented bifurcations. 

• If the Jacobian matrix Jc is positive definite (but not necessarily symmetric) 
the eigenvalues of matrix G can be proved with non-positive real parts, thus 
a pitchfork bifurcation cannot occur, ruling out the case of multiple fixed-
point states; this result is consistent with sufficient uniqueness conditions 
about traffic equilibrium. It should be noted that it is a too strong condition 
which could be relaxed to eigenvalues with real parts less than one.  

• If the Jacobian matrix Jc is also symmetric the eigenvalues of matrix G can 
be proved real, thus a Neimark bifurcation cannot occur, and that stability 
condition reduce to γk > 1- 2eR. 

It should be also noted that in a two-link network with only two eigenvalues 
different from zero, since their product is equal to the determinant of matrix G 
that is less than one (the system being dissipative) a Neimark bifurcation 
cannot be observed.  
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4.3.  Applications to simple networks 

Some examples of the bifurcations presented in sub-section 4.2 are discussed 
below, with respect to the Logit parameter θ . Similar results can be obtained 
with respect to other parameters, and are not reported for brevity‘s sake. 
Again, the same qualitative behaviour would be observed in a real-size 
network, since stability is lost with respect to one real eigenvalues (or a 
conjugate complex pair) at time. 

Results for a two-link network are presented below, with  α = 0.25, β = 0.90,     
δ = 0.40, the starting state resulting irrelevant. Figure 3 below reports a flip 
bifurcation with respect to the Logit parameter.  Results are consistent with 
those in figure 1. 
 
 

 

 

 

 

 

Figure 3: examples for a two-link network 
 

Results for a three-link network are presented below, with  α = 0.98, β = 0.98,     
δ = 0.40, the starting state resulting irrelevant. Figure 4 below reports a 
Neimark bifurcation with respect to the Logit parameter.  Results are 
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5.   ATTRACTOR IDENTIFICATION 

This section presents a method to identify attractors a part from the pictorial 
analysis in the previous sections. 

5.1.  Mathematical background 

Given the starting state x0 (and control parameters θ) the attractor can be 
identified by the contracting or expanding factor for each direction, called 
Lyapunov’s  (or Poincarè’s  or Floquet’s ) multiplier, µj. For a transition function, 
ϕ(•), continuous with its partial first derivatives, they are given by: 

 µj = limt→∞(|λt
j|)1/t         

where 
λt

j is the j-th eigenvalue of matrix Jac[ϕt(x0)] (which can be computed through 
the chain rule). 

 
Conditions on multipliers define the type of attractors as in the table below, 
where  multipliers are sorted in a descent order, 0 ≤ µn ≤…≤ µk ≤…≤ µ1. 

Type Condition on multipliers 
fixed-point 0 ≤ µn ≤… ≤ µ1 < 1 
k-periodic 0 ≤ µn ≤… ≤ µ1 < 1 
quasi-periodic 0 ≤ µn ≤…≤ µk + 1 < µk  = ….. = µ1 = 1 

(the number of µk  = 1 gives the dimension of the torus) 
a-periodic 0 ≤ µn ≤…≤ µ1  

µ1 µ2…… µn <1 
 
It should be noted that a fixed-point attractor cannot be distinguished from a k-
periodic one, consistently with comments in sub-section 2.1. 

A fixed-point or k-periodic or quasi-periodic attractor is called hyperbolic if it 
has dimension equal to the number of unitary multipliers. Non-hyperbolic 
attractors cannot be studied through multipliers, on other hand they are not 
structurally stable, say they vanish with small changes of control parameters. 

It should be noted that condition µ1 µ2…… µn < 1 holds for all type of 
attractors, even though not explicitly mentioned for the first three types, since 
clearly implied by the reported conditions. As said in sub-section 2.1 a 
condition to a system being dissipative is that the determinant of Jac[ϕ(x)] is 
less than one for any state, |Jac[ϕ(x)]| < 1, ∀ x ∈ X. In this case, it clearly 
results |Jac[ϕt(x0)]| < 1, ∀x0∈X, thus confirming condition µ1 µ2…… µn <1. 
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5.2.  Attractors identification for traffic assignment 

Attractors of the dynamic process model (1-2) can be identify through the 
Lyapunov’s multipliers with reference to the expression of the Jacobian matrix 
in sub-section 2.2. some examples are given in the next sub-section. 

5.3.  Applications to simple networks 

For a two-link network, two non null eigenvalues should be considered, hence 
two multipliers should be analysed. Some examples are given in table below. 
Results are consistent with those in previous sub-sections. 

θ µ1 µ2 # of states 
0.22 0.000000 0.000001 1 
0.24 0.795186 0.000000 1 
0.26 0.000000 0.985271 2 
0.28 0.000000 0.752689 2 
0.32 0.000000 0.000000 3 
0.35 0.000000 0.000000 3 
0.36 0.000000 0.772423 6 
0.37 1.229642 0.000000 a-periodic 
0.40 0.000000 1.124728 a-periodic 
0.60 1.085361 0.000000 a-periodic 
0.7 1.167977 0.000000 a-periodic 
0.9 0.000000 0.880651 6 
1 0.836746 0.000000 6 

 
For a three-link network, our non null eigenvalues should be considered, 
hence four multipliers should be analysed, as shown below. 

θ µ1 µ1 µ3 µ4 # of states 
0.007 0.774356 0.772992 0.772992 0.774356 1 
0.010 0.886771 0.000001 0.901406 0.901406 1 
0.012 0.955696 0.00000 0.972199 0.972199 1 
0.013 0.000000 0.977098 1.000000 1.000000 quasi-periodic 
0.014 0.000000 0.965666 1.000000 1.000000 quasi-periodic 
0.015 1.000000 1.000000 0.000001 0.961409 quasi-periodic 
0.018 0.863079 0.861943 0.000001 0.862810 2 
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6.   CONCLUSIONS AND RESEARCH PERSPECTIVES  

In this paper, the stability of the equilibrium flow (and cost) pattern coming out 
from traffic assignment has been analysed through a dynamic process model, 
based on exponential smoothing approach to cost and choice updating, by 
applying tools from discrete-time Non-linear Dynamic System theory. 

It has been shown that stability of equilibrium cannot be given for granted, in 
other words the equilibrium approach to demand assignment may fail to 
describe the state of the system relevant to analysis and design.  

Theoretical results have been discussed and illustrated through examples for 
simple networks. Results of applications for real-size networks, not reported 
here, numerically confirm results presented in this paper, but a more formally 
analysis seems useful as well as efficient algorithms for large scale 
applications and calibration against real data. 

Some theoretical issues also seem worth of further research work, namely  
the analysis of the case of multiple fixed-point states, some of them stable 
other unstable, through results from catastrophe theory (as introduced by 
Thom, 1974), the length of transients before convergence, and the 
computation of a fractal measure for a-periodic attractors. 

More generally, global stability, regarding the effect of the starting conditions, 
surely deserves an in-depth investigation, even though numerical results 
seem to support the conjecture that a locally stable fixed-point state is also  
globally stable. 
 
Finally, more general deterministic process models deserve further analysis. 
Relationship with stochastic process models, in particular with the evolution 
over time of their expected values, is an other relevant field, which has 
already attract the interest of several researchers. 
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nEquilibrium 
l no variations of demand and/or supply over time

n(day-to-day) Dynamic process
l explicit modelling of cost and choice updating 

processes

Traffic assignment modelsTraffic assignment models
IntroductionIntroduction
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Mathematical background

discrete-time non-linear dynamic system

xt = ϕ(xt-1; θ)

xt ∈ X state variables
θ control parameters of the system
ϕ(•) transition function

Dynamic process modelsDynamic process models
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Mathematical background

dissipative system : |Jac[ϕ(x)]| < 1, ∀ x ∈ X

the state tends to an attractor A
n A has a dimension smaller than the state space
n the system state may not exit A
n there exists a basin BA of A
n A is minimal

Dynamic process modelsDynamic process models

Type # of states Dimension Geometry 
fixed-point 1 = 0 One point 
k-periodic k = 0 Several points 
quasi-periodic ∞ > 0 integer Torus 
a-periodic ∞ > 0 non-integer Fractal 
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Mathematical background
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Traffic assignment

Cost flow function

c = c(f)

f ≥ 0 arc flows
c ≥ 0 actual arc costs 

c(•) arc (actual) cost flow (vector) function

Static modelsStatic models
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Traffic assignment

Network loading function

f = f(z) = ∆ D p(∆T c)

c ≥ 0 arc costs
∆ arc-path incidence matrix
p(•) path choice model
D (diagonal) flow demand matrix 
f ≥ 0 arc flows

f(•) = ∆ D p(∆T •) network loading function

Static modelsStatic models
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Traffic assignment

Cost updating process

zt = β c(ft-1) + (1 - β) zt-1

zt-1 ≥ 0 forecasted arc costs at day t-1 
ft-1 ≥ 0 arc flows at day t-1 
zt ≥ 0 forecasted arc costs at day t 

c(•) arc (actual) cost flow (vector) function

β ∈ (0,1] weight given to yesterday actual costs

Dynamic process modelsDynamic process models
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Traffic assignment

Choice updating process

ft = α f(zt) + (1 - α) ft-1

ft-1 ≥ 0 arc flows at day t-1 
zt ≥ 0 forecasted arc costs at day t 
ft ≥ 0 arc flows at day t 

f(•) network loading function

α ∈ (0,1] prob. of reconsidering the previous day choice 

Dynamic process modelsDynamic process models
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Jc = Jac[c(•)] 
Jp = Jac[p(•)]
Jf = Jac[f(•)] =

= ∆D Jp ∆T Jacobian matrix of network loading function

|J(zt, ft,)| = (1 − α)n (1 − β)n ∈ [0,1)   DISSIPATIVE

Traffic assignment
Dynamic process modelsDynamic process models

(1 - β )I β Jc J(z t, ft,) = 
α (1 - β) Jf  (1 - α) I +  αβ Jf

 Jc 
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fixed-point states

z* = β c(f*) + (1 - β) z*
f* = α f(z*) + (1 - α) f*

or
z* = c(f*)
f* = f(z*)

equivalent to SUE: f* = f(c(f*))

Traffic assignment
Dynamic process modelsDynamic process models
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| λj | < 1  ∀j 

Jac[ϕ(x)] = ∂ (xt) / ∂ (xt-1)

λj one of the eigenvalues of J(x*)
- real
- complex coniugate pair

Mathematical background

im.

real

Stability analisysStability analisys
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λj=k = λ’(α, β, γk)    ∀k
λj=n+k = λ”(α, β, γk) ∀k

| λj | < 1 ∀j 
⇔

γk ∈ ellipse (α, β) ∀k

γk one of the (n) eigenvalues of 
G = Jac[f(c*)] × Jac[c(f*)]

Traffic assignment

im.

real

α = β

im.

real

β = 1

Stability analysisStability analysis
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γk complex cojugate à λj complex conjugate 
γk reali à λj real or complex and coniugate

Traffic assignment
Stability analysisStability analysis

γ real

λ complex

γ real

λ real

γ real

λ real

γI

γRγ3 γ1 γ2
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.

Example: two-link network
Stability analisysStability analisys
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.

Example: three-link network
Stability analisysStability analisys
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Mathematical background
Bifurcation analysisBifurcation analysis

λI,k

flip

Neimark

pitchfork

λR,k

λk < −1 λk > −1

| λk | > 1
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Neimark
q.-periodic

Flip
k-periodic
a-periodic

Pitchfork
multiple 

fixed-points

im.

real

Traffic assignment

Jac[f(c*)]
sym. neg. 
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Jac[c(*)]
pos. 

def.
sym.

Bifurcation analysisBifurcation analysis
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Example: two link network
Bifurcation analysisBifurcation analysis
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Example: three link network
Bifurcation analysisBifurcation analysis
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Mathematical background

Lyapunov’s multipliers
µj = limt→∞(|λt

j|)1/t

λt
j j-th eigenvalue of matrix Jac[ϕt(x0)]

Attractor identificationAttractor identification

Type Condition on multipliers 
fixed-point 0 ≤ µn ≤… ≤ µ1 < 1 
k-periodic 0 ≤ µn ≤… ≤ µ1 < 1 
quasi-periodic 0 ≤ µn ≤…≤ µk + 1 < µk  = ….. = µ1 = 1 

(the number of µk  = 1 gives the dimension of the torus) 
a-periodic 0 ≤ µn ≤…≤ µ1  

µ1 µ2…… µn  <1 
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Example: two link network

.

Attractor identificationAttractor identification

θ µ1 µ2 # of states 
0.22 0.000000 0.000001 1 
0.24 0.795186 0.000000 1 
0.26 0.000000 0.985271 2 
0.28 0.000000 0.752689 2 
0.32 0.000000 0.000000 3 
0.35 0.000000 0.000000 3 
0.36 0.000000 0.772423 6 
0.37 1.229642 0.000000 a-periodic 
0.40 0.000000 1.124728 a-periodic 
0.60 1.085361 0.000000 a-periodic 
0.7 1.167977 0.000000 a-periodic 
0.9 0.000000 0.880651 6 
1 0.836746 0.000000 6 
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Example: three link network
Attractor identificationAttractor identification

θ µ1 µ1 µ3 µ4 # of states 
0.007 0.774356 0.772992 0.772992 0.774356 1 
0.010 0.886771 0.000001 0.901406 0.901406 1 
0.012 0.955696 0.00000 0.972199 0.972199 1 
0.013 0.000000 0.977098 1.000000 1.000000 quasi-periodic 
0.014 0.000000 0.965666 1.000000 1.000000 quasi-periodic 
0.015 1.000000 1.000000 0.000001 0.961409 quasi-periodic 
0.018 0.863079 0.861943 0.000001 0.862810 2 
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conclusions

stability of equilibrium
cannot be given for granted

equilibrium approach may fail to describe the state 
of the system relevant to analysis and design

n theoretical results 
n examples for simple networks 

n results of applications for real-size networks
more formally analysis useful
calibration methods
algorithms for large-scale networks

End of presentationEnd of presentation
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Research perspectives

n analysis of the case of multiple fixed-point states
through results from catastrophe theory

n length of transients before convergence

n fractal measure for a-periodic attractors

n global stability 
(numerical results seem to support the conjecture that a 
local stable fixed-point state is also globally stable)

n more general models

n relationship with stochastic process models

End of presentationEnd of presentation
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