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1.  INTRODUCTION  
 
The concept of road pricing is a long-established fiscal mechanism aimed to control 
the demand of road usage (Pigou, 1920; Knight, 1924; and Walters, 1961). This 
policy emerged from the belief that car users have not paid their full costs of road 
uses (Vickrey, 1969). The idea is proposed that by alleviating the appropriate tolls the 
traffic level and distribution will organise itself in an optimal way. The “optimal way” is 
regularly referred to the traffic pattern and demand level that maximise the social 
welfare (Yang and Huang, 1998 and Verhoef, 2000). Under the assumption that all 
links in a network can be tolled, the first-best optimal toll can be found easily by 
solving the system optimal traffic assignment problem (Sheffi, 1985). However, the 
problem becomes much more complex when only a subset of links is to be tolled 
(called the second-best optimal toll problem). Since the emergence of the concept of 
the second-best optimal toll problem, many economists have illustrated the approach 
to quantify the optimal toll level. (Levy-Lambert, 1968; Marchand, 1968; Vickrey, 
1968; Arnotte et al, 1990; McDonald, 1995; Liu and McDonald, 1999; Verhoef 2000; 
Small and Yan, 2001).  
 
In the optimisation context, the second-best marginal cost toll problem is categorised 
as a mathematical programming problem with equilibrium constraints (MPEC), a 
special case of the bi-level optimisation programming problem (BLPP).  The regulator 
tries to set the toll locations and toll levels to optimise his or her objective whilst the 
users attempt to minimise their own travel costs.  The optimal toll problem can also 
be seen as a special case of the network design problem.  Several methods have 
been proposed to tackle this challenging problem.  Most procedures to solve the 
BLPP use derivatives and can be put into one of the following categories, heuristic 
iterative optimisation method (Steenbrink, 1974; Allsop, 1974; Suwansirikul et al; 
1987), transforming the BLPP to a single level optimisation program, linearisation 
method (LeBlanc and Boyce, 1986; and Ben-Ayed et al, 1988), and stochastic search 
methods1 (Friesz et al, 1992; Cree et al, 1998; and May et al, 2002).  There exists a 
diverse range of techniques used to transform the BLPP to a single level optimisation 
program.  These include sensitivity based analysis (Friesz et al, 1990;Yang, 1997; 

                                                
1 e.g. simulated annealing and genetic algorithms 
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Yang and Bell, 1997), Karush-Kuhn-Tucker (KKT) based method (Marcotte, 1983; 
Marcotte, 1986; and Verhoef, 2000), using the system optimal solution to formulate 
the set of tolls for the second-best case under user equilibrium (Bergendorff et al, 
1996; Hearn and Ramana, 1998; and Hearn and Yildirim, 2000), and recently a 
marginal function based method (Meng et al, 2001).  
 
In the real world, the design of pricing schemes not only involves determining the toll 
levels but also the locations of the toll points. The common practice of various real-
world cases or on-desk studies is to apply the judgmental approach or a trial and 
error process to seek the optimal toll location and the toll level (Shepherd et al, 2001; 
May et al, 2002; and Sumalee, 2001). The “trial and error process” normally starts by 
defining a set of possible charging cordons and their associated common toll levels. 
Then, each option will be tested with traffic modelling software, such as SATURN 
(Van Vliet et al, 1982). The benefit of each scheme will be calculated from the 
modelling output and the best scheme will be chosen. The sub-optimality of this 
judgmental design is well addressed in a recent study (May et al, 2002). Recently, 
there have been increasing attempts to develop the analytical approach to tackle the 
optimal toll location problem (Mun et al, 2001; Shepherd et al, 2001; Verhoef, 2000; 
Hyman and Meyhew, 2002; Yang et al, 2002; and Shepherd and Sumalee, 2002).  
 
This paper firstly demonstrates a derivative based method proposed by Verhoef 
(2000) to solve the optimal toll level and location problems (named CORDON and 
LOCATE respectively). New methods are then developed to tackle the problems 
based on genetic algorithms (GA) and parallel genetic algorithms (PGA).  The paper 
consists of four further sections.  The next section shows the formulation of the 
optimal toll problem as an MPEC and explains briefly the derivative based method.  
Section three then proposes four new methods based on GA and PGA including GA-
CHARGE, GA-LOCATE, GA-LOCATEII, and PGA-ALL. Section four displays 
numerical results comparing the derivative, GA, and PGA based approaches.  The 
final section draws conclusions and discusses the future research.  
 
2. DERIVATIVE BASED METHOD TO OPTIMAL TOLL DESIGN  
 
2.1  Optimal toll level on a specified set of links 
 
The problem of defining the optimal toll level on a specified set of tolled links (termed 
OPT1) can be formulated as a MPEC.  Verhoef (2000) proposed the method to solve 
the OPT1 by maximising the following Lagrangian2: 
 

                                                
2 Notation is given in appendix A. 
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subject to the set of feasible path flows and non-negative path flows.  The first two 
terms represent the Marshallian measure of social welfare which the leader tries to 

maximise. The pλ are the Lagrange multipliers associated with each used path under 

the equilibrium condition. The third term associated with the Lagrange multiplier is 
the complementarity slackness constraint for the user equilibrium condition (Smith, 
1979). Note that only the used paths under equilibrium condition (Fp > 0) are included 
in the Lagrangian in order to reduce the complementarity slackness condition to the 
normal equality constraint. Verhoef (2000) derived the first order condition of this 
Lagrangian.  Shepherd et al (2001a) utilised this first order condition to develop the 
mathematical program, termed CORDON, linked with SATURN (Van Vliet et al, 
1982) to solve OPT1. 
 
2.2 Optimal toll location in a general network 
 
The other problem when designing a toll based road pricing system is to define the 
optimal toll point locations given the desired number of tolled points (termed OPT2).  
A related problem is to find the optimal number of tolled points and locations 
simultaneously while considering implementation costs (termed OPT3).  The most 
straightforward approach to solve the optimal toll location problem is to test all the 
combinations of tolled points. However, this would be computationally demanding 
due to the massive number of possible combinations of tolled points. Suppose that 
we try to choose the best t tolled links from the j links in the network, the number of 

all possible combinations of the tolled links will be
)!(!

!
tjt

j
−

. Verhoef (2000) proposed 

an incremental approach which Shepherd et al (2001b) adapted and termed 
LOCATE.  
 
The LOCATE process is an extension of CORDON and involves building up a list of 
toll points incrementally, by choosing links one by one on the basis of a location 
index.  The location indices are the approximation of the welfare gains that would 
result from placing optimal charges in particular locations. They use the predicted toll 
from the first iteration of the CORDON process combined with the shadow prices 
associated with the link(s) considered.  Although previously selected toll points are 
always included, the charge levels are allowed to vary each time an additional link is 
added.  Those interested in the details of the CORDON process and the LOCATE 
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process should refer to Shepherd et al (2001a) and Shepherd et al (2000b) 
respectively.   
 
Shepherd et al (2001b) already showed that LOCATE can fail to identify the best pair 
of tolled links from a simple five-link network. This happened because the best 
“single” tolled link was not part of the best “pair”. To overcome this weakness Verhoef 
(2000) suggested a greedy search could be used. However, it is not practical to 
implement this strategy with large-scale networks due to the number of possible 
combinations mentioned earlier. Thus, the idea of genetic algorithms (GA) is adopted 
to generate combinations of tolled points instead. Also, an alternative approach 
based on parallel genetic algorithms (PGA) is developed to simultaneously solve the 
optimal toll level and location problems without using the location indices. The next 
sections introduce the concept of GA and PGA based methods to solve the problems 
OPT1, OPT2, and OPT3. 
 
3. GENETIC ALGORITHM BASED METHODS 
 
3.1  Introduction to genetic algorithms 
 
Genetic algorithms (GA) are one of the artificial intelligence exhaustive searching 
techniques; they are stochastic algorithms whose search methods model some 
natural phenomena: genetic inheritance and Darwinian strife for survival. Davis and 
Steenstrup (1987) stated that: 

 

“The metaphor underlying genetic algorithms is that of natural evolution.  In evolution, 
the problem each species faces is one of searching for beneficial adaptations to a 
complicated and changing environment .The ‘knowledge’ that each species has 
gained is embodied in the makeup of the chromosome of its members.” 

 
The basic idea of the GA approach is to code the decision variables of the problem 
as a finite string (called ‘chromosome’) and calculate the fitness (objective function) 
of each string.  Chromosomes with a high fitness level have a higher probability of 
survival. The surviving chromosomes then reproduce and form the chromosomes for 
the next generation through the ‘crossover’ and ‘mutation’ process.  The method of 
GA is widely applied in many disciplines, but most applications have to modify the GA 
to the problem or change the problem to be compatible with GA.  The main parts in 
the modification process are the design of chromosome encoding and of the genetic 
operators (crossover and mutation processes) in order to maintain the search within 
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the feasible space.  In the following sections, four methods are developed to solve 
the OPT1, OPT2 and OPT3 problems. 
 
3.2   A method to solve optimal toll levels (GA-CHARGE) 
 
The GA-CHARGE approach is developed to solve the OPT1 problem. The process of 
GA-CHARGE randomly generates an initial set of chromosomes representing 
possible combinations of charge levels on a predefined set of links. The benefits in 
terms of social welfare improvement are evaluated for each charge level by running 
SATURN. GA-CHARGE then selects the parent chromosomes for the next 
generation based on the performance of each chromosome. Since the fitness value 
in GA-CHARGE can be negative, the selection is based on the tournament selection 
process (Michalewicz, 1992). The genetic operators, crossover and mutation, are 
then randomly applied to the parents to produce the offspring.   
 
Chromosome encoding 
 
Let t be the number of predefined tolled links and let r be the predefined maximum 
toll level. Each chromosome represents a set of toll levels for the t-tolled links in 
binary format. The structure of the chromosome is therefore a matrix A with t 
columns and k rows where k is determined by the number of digits required to 
represent the maximum toll in binary format.  Figure 1 shows an example 
chromosome (A matrix) for ten tolled links. The toll on each link is defined by the 
binary number in each column which is shown in the bottom row.   
 
 
 
 
 
 
 
Figure 1: Chromosome structure for GA-CHARGE 
 
Crossover and mutation process 
 
The crossover process is designed to randomly choose the blocks from two “mated” 
chromosomes and switch the values in the blocks (see Figure 2).  
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Figure 2: An example of the crossover process in GA-CHARGE 
 
After the crossover process, the mutation process is applied to the offspring. The 
mutation process randomly chooses cells to be “mutated”. If selected, the value in 
that cell is changed from 0 to 1 or vice-versa.   
 
3.3  A method to solve optimal toll location based on location indices (GA-

LOCATE) 
 
This section explains the approach to use GA to solve the optimal toll location 
problem, termed GA-LOCATE. The GA process is used to randomly generate and 
evolve the combinations of the tolled points (chromosome). The location index (see 
Section 2.2) of each combination is calculated and used as its fitness value. The 
selection process is based on “stochastic universal” which uses a single wheel spin. 
The so-called “roulette wheel” is constructed where each slot represents a 
chromosome. The slots are sized according to the fitness of each chromosome.  The 
size then represents the probability of a chromosome being selected.  
 
Chromosome encoding 
 
The user inputs the number of tolled points required. The adapted chromosome for 
OPT2 varies the length of chromosome to represent the required number of tolled 
links and each bit represents a selected link. A list of candidate links can be prepared 
in advance to reduce the problem. With this structure, the length of the chromosome 
already controls the required number of tolled points. However, one problem with this 
structure is duplicating the selected links during the genetic operations. 
 
Crossover and mutation process 
 
Two points on the chromosome are randomly chosen and all “bits” in between these 
two points of the parents are switched. The mutation process is normally used to 
avoid the premature convergence of the GA process. In the traditional GA process, 
the value assigned to each bit is either 1 or 0 (as used in GA-CHARGE).  In our 
modified chromosome, the possible value in each bit is the integer number between 
1 and the highest number of candidate links.  
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3.4  A GA based method to solve toll location problems with implementation 
costs (GALOCATEII) 

 
The GA-LOCATEII process is developed to solve the problem OPT3. The general 
algorithm is similar to GA-LOCATE but includes implementation costs. The traditional 
chromosome structure of GA, string of binary bit, is adopted since there is no 
constraint on the number of toll points required in this problem. One column is 
required for each candidate link. If the value is 1, the corresponding link is to be 
tolled. The location index is calculated and the implementation and operation costs 
per toll point are subtracted.  The standard crossover and mutation processes are 
also adopted. Note that since the fitness value (location indices net of costs) can be 
negative the linear ranking proposed by Whitley (1989) linked with stochastic 
universal sampling is adopted. The slots in the roulette wheel are sized according to 
the chromosome at rank i, where the first is the best chromosome, by the following 
equation:-  
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where P is the size of the population set P, and 1 2c≤ ≤ is “the selection bias”: 

higher values of c cause the system to focus more on selecting only the better 
individuals. The best individual in the population is thus selected with the probability 

P
c

; the worst individual is selected with the probability 
P

c−2
.  

 
3.5  A parallel genetic algorithms based method to solve OPT3 (PGA-ALL) 
 
The process of GA-LOCATEII described in the previous section relies on the location 
indices which is only an approximation of the benefits. In order to avoid using an 
approximation of the benefits, the method based on “Parallel Genetic Algorithms” 
(PGA) is developed to solve the optimal toll location and optimal toll level 
simultaneously (named PGA-ALL). The parallel approach is adopted to reduce the 
computational workload in GA. The underlying idea of PGA is to decompose the 
feasible search space of the traditional GA into a number of disjoint partitions with or 
without “communication” between them.  
 
For the optimal toll location problem, each partition is comprised of a set of candidate 
links. The framework of PGA adopted in this paper is the master and slave nodes 
framework. In this framework, the sets of subpopulation are created and assigned to 



 

© Association for European Transport 2002  

slave nodes. Independent populations are associated to nodes, called local 
population (PL), see Figure 3. In our OPT3 problem, a set of candidate links is 
assigned to each slave node. The normal GA process is applied to each slave node 
in parallel to evolve the chromosomes in each local population (in our case, the 
optimal combination of tolled links and their optimal toll levels). The PGA will then 
search for the optimal combination of tolled links in each partition separately with the 
“migration” of the strongest chromosome to other partitions during the search. 
 
At the end of each generation, each slave node sends the strongest chromosome in 
their local population to the master node. The master node, representing the global 
communication between slave nodes, then chooses the best global chromosome and 
sends it back to all slave nodes. Each independent slave node replaces the worst 
local chromosome by the new best global chromosome received.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Master-Slave nodes framework for parallel genetic algorithms 
 
In PGA-ALL, the normal GA process applied to each slave node uses the selection, 
crossover, and mutation process similar to those explained earlier.  
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4. NUMERICAL RESULTS 
 
4.1 Network description and experimental setting 
 
In this section, the methods developed in the previous sections are tested with a 
medium-scale network.  Figure 4 shows the network which is based loosely on the 
City of Leeds network in the UK.  It should be noted, as the detail of the network has 
been reduced to decrease the complexity and computation time, the network cannot 
be considered as a comparative model to the real Leeds network. There are 89 
directed links and 14 zones in this network. The triangular nodes represent the 
zones. The network is a bufferised version of a SATURN network, which means the 
supply is represented by independent flow-delay relationships for each link. The 
network is used for the following tests:- 
 
i. Given three pre-defined charging cordons, the CORDON and GA-CHARGE 

processes are used to find the optimal toll levels around each cordon, see 
Figure 4 (OPT1); 

ii. Given the desired number of tolled links, the LOCATE and GA-LOCATE 
processes are applied to find the optimal location of the tolled links (OPT2) 
and charge levels are then optimised using CORDON; 

iii. Finally, GA-LOCATEII and PGA-ALL are applied to find the optimal number of 
tolled points, their locations and toll levels assuming implementation costs 
(OPT3).  

 
4.2 Numerical results 
 
The results of OPT1 
 
Figure 4 shows the three predefined charging cordons, i.e. inner, intermediate, and 
outer cordons. The CORDON and GA-CHARGE processes are employed to find the 
optimal toll on each toll point of these three cordons. Tables 1, 2, and 3 show the 
optimal toll levels and benefits found by CORDON and GA-CHARGE for the inner, 
intermediate, and outer cordons respectively. The percentage in brackets is the 
relative social welfare improvement compared to the first-best condition.  
 
The first-best condition is to apply the marginal cost tolls derived from the system-
optimum assignment on all links. In our case, the social welfare improvement for the 
first-best condition is £5,213 per single AM peak period. The optimal uniform tolls 
around each cordon are also calculated using a standard univariate optimisation 
method.  The optimal uniform tolls for the inner, intermediate, and outer cordons are 
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£0.21, £0.19, and £1.04 with social welfare improvements of £166, £445, and £923 
per single AM peak period respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: MINILEEDS network used in the numerical tests 
 
From the tables note that allowing the tolls to vary around the cordons increases the 
benefits significantly.  Furthermore applying GA-CHARGE gives higher benefits than 
the solution produced by CORDON in all cases3.  The benefits increase by 23%, 8%, 
and 12% for the inner, intermediate, and outer cordons respectively.  Figure 5 
illustrates the process of GA-CHARGE for the outer cordon which consists of 6 tolled 
links. The Y-Axis is the fitness value of each chromosome which is the value of social 
welfare improvement (£ per single AM peak). The X-Axis is the chromosome number. 
Note that in this test, the population size is 30 with 50 generations.  

                                                
3 Note that the CORDON process did not converge properly for the cordons due to subtle changes in the path 
sets and so the benefits are not necessarily optimal – hence there is room for improvement which is where GA-
CHARGE can obtain extra benefits.  
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INNER CORDON 

Link Optimal toll from CORDON (£) Optimal toll from GA-CHARGE (£) 
201-100 0.75 0.68 
202-101 1.07 0.90 
205-100 0.41 0.24 
Social welfare improvement 
(£ per single AM peak) 

305 (5.8%) 375 (7.2%) 

Table 1: Optimal tolls and benefits for the inner cordon in MINILEEDS network 
calculated by CORDON and GA-CHARGE 

INTERMEDIATE CORDON 
Link Optimal toll from CORDON (£) Optimal toll from GA-CHARGE (£) 
302-201 0.38 0.34 
304-202 0.62 0.63 
306-203 0.66 0.73 
308-203 0.73 0.73 
310-309 0.09 0.09 
310-206 0.07 0.08 
300-200 0.09 0.09 
Social welfare improvement 
(£ per single AM peak) 

1,005 (19.2%) 1,084 (20.8%) 

Table 2: Optimal tolls and benefits for the intermediate cordon in MINILEEDS 
network calculated by CORDON and GA-CHARGE 
 

OUTER CORDON 
Link Optimal toll from CORDON (£) Optimal toll from GA-CHARGE (£) 
401-302 0.75 0.83 
403-304 1.13 1.40 
405-306 1.17 2.05 
407-308 1.03 1.39 
410-310 1.02 1.07 
400-300 0.30 0.65 
Social welfare improvement 
(£ per single AM peak) 

1,166 (22.3%) 1,305 (25%) 

Table 3: Optimal tolls and benefits for the outer cordon in MINILEEDS network 
calculated by CORDON and GA-CHARGE 
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Figure 5: The GA-CHARGE process and the trend of improvement in the fitness 
value 
 
This means GA only sampled 1,500 chromosomes from all possible combinations. 
According to the chromosome encoding of GA-CHARGE presented earlier, the total 

number of possible chromosomes is 2
kt .  In this case, t is equal to 6 tolled links and k 

is equal to 10, the number of digits required in binary format to represent the 

maximum possible toll given as 1000 seconds, resulting in 6002 possible 
combinations.  Note the extremely small ratio between the sampled chromosomes 
and the possible combinations.  
 
The results of OPT2 
 
The problem of OPT2 is to identify the optimal location of tolled links given the 
desired number of tolled points. The MINILEEDS network is used again in this test. 
Two tests are conducted, finding the best six and best ten optimal tolled links. 
LOCATE and GA-LOCATE are applied to the problems. The total number of directed 
links in the network is 89. Thus, the possible number of combinations for the problem 

of six and ten optimal tolled links are approximately 85.8 10× and 125.0 10×  
respectively, which is impractical to implement through enumeration or greedy search 
methods.  
 
Figure 6 is used to explain the results obtained from LOCATE and GA-LOCATE4.  
The arrows in the figure represent the links selected.  From Figure 6, LOCATE 
selected links A, B, C, D, E, and F as the best six tolled links. Then, LOCATE added 
links G, H, I, and J as the additional four links for the best ten tolled links. On the 
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other hand, GA-LOCATE selected links A, B, C, D, E, and L as the best six tolled 
links. Note that GA-LOCATE only picked one different link compared to the set of 
best six tolled links selected by LOCATE (link L rather than link F).  GA-LOCATE 
then selected links A, B, C, D, E, G, I, K, M, and N as the best ten tolled links. Seven 
links out of ten links selected by LOCATE are also selected by GA-LOCATE.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Location of the best 6 and 10 tolled links from LOCATE and GA-LOCATE 
 
Table 4 shows the social welfare improvement in pounds per single peak hour (the 
percentage in the bracket is the relative welfare improvement compared to the first-
best condition). The optimal benefit of the best six and ten tolled links chosen by GA-
LOCATE is only slightly higher than those from LOCATE  (approximately 0.9% and 
2.9% respectively).  The difference is that LOCATE has to include all previously 

                                                                                                                                                   
4 Links B and C are the same link but in the opposite direction. Also, links A and H are the same link 
but in the opposite direction. 
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selected links within its solution whereas GA-LOCATE can drop links e.g. link L is not 
included in the best 10 links even though it is included in the best 6 link solution.  It 
should be noted that even though the LOCATE and GA-LOCATE methods rely on 
indices which could contain errors, both methods produce solutions which give rise to 
85% of the first best conditions even with only 6 toll points.  The fact that adding a 
further 4 links only gives a marginal increase in benefits suggests that the optimal 
number of toll points when considering implementation costs would be somewhere 
between 5 and 10 links.  
 

Method Benefit for best 6 tolled links Benefit for best 10 tolled links 
LOCATE £4,385 (84.1%) £4,611 (88.4%) 
GA-LOCATE £4,427 (86.8%) £4,745 (91%) 

 
Table 4: Benefits of the best 6 and 10 tolled links from LOCATE and GA-LOCATE 
 
The results of OPT3 
 
In this test, the implementation and operation costs per toll point are calculated using 
a discounted value over a 30-year period. The cost per toll point is assumed to be 
£100 per toll point per peak-hour based on estimates by Oscar Faber (2001). GA-
LOCATEII is used to find the optimal number of tolled points and their locations. GA-
LOCATEII identified 10 as the optimal number of tolled links. It selected the best ten 
tolled links that were chosen by GA-LOCATE previously. This result is wrong since 
the net benefit for the best 6 tolled links is £3,827 per single peak hour which is 
actually higher than that from the net benefit from the best 10 links (£3,745 per single 
peak hour).  
 
The gross location indices for the best 6 and 10 tolled links are £6,465 and £12,192 
per single peak hour and the indices net of costs are £5,865 and £11,192. Thus, 
even after subtracting the costs from the location indices, the set of 10 tolled links 
remains better than the set of 6 tolled links.  The location indices are overestimated 
for both sets of tolled links.  Experience suggests that the toll predictions used in the 
location index are always an over-estimate of the true optimal tolls i.e. the error terms 
associated with a link are always positive5.  Thus we suggest that as the number of 
links considered is increased then the error in the location index is increased.  This 
does not cause any difficulties for OPT2 as the number of links considered is 
constant and implementation costs are equal.  However as seen here the OPT3 
problem has a variable implementation cost and as the magnitude of the errors vary 

                                                
5 This is our experience with the CORDON process though we have not yet been able to prove this in a general 
case. 
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with links considered the solution selects the wrong combination. Further research is 
required to improve the performance of the location index approach. 
 
PGA-ALL is also applied to the OPT3 problem. PGA-ALL selects 4 links shown in 
Figure 7 as the optimal combination of tolled links. The number beside each link is 
the optimal toll also found by PGA-ALL. Table 5 compares the net benefits  
 
 
 
 
 
 
 
 
 
 
  
 
 
Figure 7: Optimal toll locations selected by PGA-ALL 
 

Methods No. of tolled links selected Net benefits 
GA-LOCATE 6 £3,720 
GA-LOCATEII 10 £3,570 
PGA-ALL 4 £2,863 

 
Table 5: Comparison of the net benefits of the best tolled links found by GA-
LOCATE, GA-LOCATEII, and PGA-ALL 
 
The point that should be made is that the toll levels used in PGA-ALL are discrete toll 
levels (with an increment of 15 pence) compared to the continuous toll levels used in 
GA-LOCATE and GA-LOCATEII. Thus, the benefits of the tolled links found by GA-
LOCATE and GA-LOCATEII with the discrete toll levels are used in this table instead. 
It should be noted that the number of the optimal tolled points used in GA-LOCATE is 
identified by the user. This is done during the incremental process of LOCATE. When 
a new link is added to the toll combination in LOCATE, the increase in the benefit is 
considered and it was noticed that the cost of adding the seventh tolled link is 
actually higher than the increases benefit. Thus, the optimal number of tolled links 
should be six. Then, GA-LOCATE is used to identify the best combination of six 
tolled links.  
 

O 
(£0.50) 

P 
(£0.50) 

Q 
(£0.65) 

R 
(£2.15) 
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From Table 5, it seems that GA-LOCATE with user intervention is the best approach 
compared to GA-LOCATEII and PGA-ALL. The benefits of the tolled links selected by 
GA-LOCATE is higher than those from PGA-ALL about 20 %. GA-LOCATEII also 
outperformed PGA-ALL in terms of the net benefits. From the results shown in Figure 
6 earlier, PGA-ALL selected two new links, link O and link Q which do not appear in 
the results of GA-LOCATE and GA-LOCATEII. 
 
The main reason for the failure of PGA-ALL is the process between Master and 
Slave nodes. The migration process used to represent this process is currently under 
development. The current migration method imposes a very low probability of 
chromosomes moving from one partition to another which resulted in a low 
probability of mixing tolled links from different partitions. It is also because the 
computational effort is shared between the tasks of finding the optimal toll location 
and toll levels. The number of SATURN runs used in this test is around 24,000 runs 
which is far less than 0.001% of the number of possible combinations of 

chromosome (approximately 1605 10×  combinations). This implies that PGA-ALL may 
simply require more SATURN runs to approach a better result.  
 
 
 
 
5. CONCLUSIONS AND FURTHER RESEARCH 
 
We have demonstrated that the derivative based approach can solve the second-
best tolling problem, but there are still some problems corresponding to the 
characteristics of MPEC. The GA-CHARGE approach was shown to be successful in 
solving the OPT2 problem giving slight improvements over the CORDON process. 
 
The incremental LOCATE approach performed well in the case study of MINILEEDS, 
but in general suffers from the weakness whereby previously selected links cannot 
be de-selected when building a combination of toll points.  The GA-LOCATE 
approach gives only a slight improvement in the case presented as many of the links 
selected by LOCATE are also in the GA solution. The problem OPT3 is the most 
difficult problem to solve. The structure of GA-LOCATEII should in theory be able to 
solve this problem, but errors in the location indices appear to be additive as the 
number of links considered is increased.  The method based on PGA-ALL is then 
developed to bypass the use of location indices. However, the results of applying 
PGA-ALL with the MINILEEDS network suggested that it still needs further 
development.  
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Although, both GA-LOCATE and GA-LOCATEII produce better results than PGA-
ALL, the method based on PGA is considered as a promising method.  PGA-ALL is 
used to optimise the optimal toll location and toll levels at the same time which 
results in a massive number of combinations. At this stage, PGA is applied with its 
simplest structure. Several issues and techniques are still available for the 
improvement of the performance of PGA-ALL.  In this paper, the candidate links are 
simply separated into 6 areas geographically. This appears to cause a problem in 
passing links from one partition to another. Further research is required in setting the 
partitions needed for parallelisation. 
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Appendix A: Notation 
 
N The set of nodes in the network 
I the set of OD-pairs, denoted i=1,…,I 
Ti the continuous number of users (or OD-flow) for OD pair i, with Ti ≥ 0 
Di(Ti) the inverse demand function for trips for OD-pair i, with D’i ≤ 0 
J the set of directed links in the network, denoted j=1,..,J 
Vj the continuous number of users (or link flow) on link j, with Vj≥ 0 
Cj(Vj) the average cost function for the use of link j, with cj′≥ 0 
Cp the travel costs on path p 
∏ the set of non-cyclical paths in the network, denoted p=1,…,P 

Fp the continuous number of users (or path-Flow) for path p, with Fp≥ 0 

∏I the set of non-cyclical paths for OD-pair i, denoted pi=1,…,Pi 

δjp A dummy that takes on the value of 1 if link j belongs to path p, and a value of 0 
otherwise 

εj A dummy that takes on the value of 1 if a toll can be charged on link j, and a value of 0 
otherwise 

fj the level of the toll on link j if εj=1 
i or k index for OD pairs 
j or m index for links 
p or q index for paths 
λp Lagrange multiplier associated with path p 

∆ip A dummy equal to 1 if pε∏i and   

 


