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Abstract 
 
Dynamic transportation models are becoming widespread owing to the ready access to 
powerful computing resources. This has led to the increasing use of Dynamic Traffic 
Assignment (DTA) and traffic simulation for a variety of planning applications. Time-
varying origin-destination (OD) trip tables are key inputs to such models. However, they 
are generally not directly observed and must be estimated from other traffic 
measurements such as counts. We discuss several dynamic OD estimation approaches 
found in the literature and describe one of the more recent methodologies in detail.  This 
method was tested in the TransModeler traffic simulation package using two examples: a 
small case study with simulated data, and a real network and count data from the I-5 
corridor in California. The results confirm that dynamic OD estimation is hard in 
practice, but can provide significant improvements over the current state of the practice. 
 
1. Introduction 
 
Dynamic traffic assignment (DTA) and traffic simulation are becoming increasingly 
popular for transportation planning. These models are perceived to be superior to static 
approaches due to their potential ability to capture the spatial and temporal evolution of 
traffic on the network. Capacity constraints further add to their realism so that the 
minute-by-minute formation and dissipation of queues and spillbacks can be studied. In 
research investigations, dynamic models have been used for diverse applications such as 
High Occupancy Vehicle (HOV) and High Occupancy Toll (HOT) lane analyses, 
congestion pricing, workzone management, evacuation planning and vehicle routing. 
 
While dynamic models have many potential benefits and applications, setting up their 
numerous inputs and parameters is generally a costly process. Critical among these 
quantities are time-varying network demand matrices (or trip tables). Each such matrix or 
table represents the origin-destination (OD) flows departing the respective origin zones 
during a single time interval. In contrast to static models, however, these time intervals 
are short, typically of 5, 10 or 15 minute duration. The trips begin and end in different 
time intervals so that the OD flows from various departure time intervals interact and 
share the roadway capacity over space and time. In reality, it is impossible to directly 
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measure all the OD flows even in a static trip table, and it is more difficult to measure 
dynamic tables. 
 
Travel surveys contain useful OD information that can be expanded from the individual 
trips sampled. However, due to sample size limitations, inferring an OD matrix from 
travel surveys is a daunting task even with static assumptions, and the addition of the 
time dimension complicates the process further. Surveys are time-consuming and 
expensive and cannot be repeated often. Also, only a very small fraction of the total trips 
in any interval can be reliably sampled this way. Sampling also results in biases when 
expanding the results to the population level. These issues have motivated numerous 
studies to infer static or dynamic OD matrices from link count data. 
 
Various sensor technologies can count vehicles, while others attempt to measure their 
speeds. Loop detectors embedded in the pavement are currently the most popular 
counting method. Two such loops installed a known distance apart can be used to observe 
a vehicle’s travel time between the loops, thereby measuring its speed. Other methods 
include roadside sensors such as Remote Traffic Microwave Sensors (RTMS) and 
acoustic sensors, as well as point-to-point technologies based on Automatic Vehicle 
Identification (AVI). If sensors are located on a sufficient number of network links, it 
may be possible to infer the OD flows that generated the counts on these links. In other 
words, OD estimation involves the identification of time-varying OD matrices that, when 
assigned through a dynamic traffic model, accurately mirrors the time-varying observed 
link counts. 
 
While it seems conceptually simple, dynamic OD estimation is notoriously difficult in 
practice. There are several reasons for this. The count data are generally prone to 
measurement errors, and may be inconsistent across space and time as sensors may 
malfunction for part of the day. Even if these errors were minimal, the spatial coverage of 
sensors is likely to be very sparse so that the vehicles between several OD pairs are not 
captured by any of the sensors. There could also be network coding errors that result in 
unrealistic paths in the assignment model. Perhaps the most significant challenge is the 
presence of multiple OD solutions that provide similar fit to the observed count data. This 
has led to significant academic research on OD estimation under a variety of 
assumptions. 
 
Cascetta (1988) proposes a least squares version of the static OD estimation problem, 
later expanding the treatment to congested conditions in Cascetta and Postorino (2000). 
Cascetta et al. (1993) extend the static least squares method to the dynamic case, 
introducing simultaneous and sequential estimators. While the simultaneous approach 
estimates OD flows for all departure time intervals at once, it was found to be 
computationally expensive. The sequential approach was proposed for practical 
applications, in which only one interval (the current interval) would be estimated at any 
time. All previous intervals’ estimates, once obtained, were maintained constant. Both 
approaches rely on the calculation of dynamic assignment matrices that map OD flows to 
link flows.  
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Spiess (1990) presents an iterative, gradient-based procedure for adjusting static OD 
matrices using the output of a stochastic equilibrium assignment. This approach 
minimizes the sum of squared errors between the observed sensor flows and the assigned 
equilibrium link flows. The OD flow variables are updated iteratively by moving along a 
descent direction by some step size, with the descent direction derived from an analytical 
gradient evaluated at the current equilibrium solution. 
 
Nielsen (1997) describes single-path and multi-path methods for updating static OD 
matrices by comparing assigned and observed link flows along the path(s) used by each 
OD pair. The ratios of observed to assigned flows for each OD pair are collectively used 
to calculate an updating factor for the flow between that OD pair. Nielsen treats the 
counts as random variables that can include measurement errors. Hazelton (1999, 2000) 
suggests a maximum likelihood approach for static OD estimation. 
 
Tavana and Mahmassani (2000) apply the method in Cascetta et al. (1993) to a small, 
synthetic network and use a simulation-based DTA to calculate assignment matrices. 
Balakrishna (2002) adopts a similar approach to calibrate OD flows using a network and 
count data from Irvine, California. This work also jointly calibrates error covariance 
terms and a route choice model that impacts the DTA’s assignment matrix calculations.  
 
Ashok (1996) formulates the dynamic OD estimation problem as a state-space model and 
solves it using Kalman filters. Antoniou et al. (2007) use Kalman filters to solve for OD 
flows and other DTA parameters in real-time, while Balakrishna et al. (2007) present a 
general framework for simultaneously estimating OD flows and other DTA parameters 
across all time intervals. 
 
The research described above is almost entirely in the realm of academic research. In this 
paper, we discuss the application of the approach in Balakrishna et al. (2007) to a real-
world dynamic OD estimation situation. The rest of the paper is organized as follows. 
The methodology including a scalable solution approach is summarized in section 2. 
Numerical test results on a small example and a real-world network are described in 
sections 3 and 4 respectively. The main conclusions of the estimation work are 
summarized in section 5.  
 
2. Methodology 
 
Let the study period be divided into H departure time intervals, Hh ,...,2,1= . Let hx  be 
the column vector of OD flows departing during time interval h. Such a vector would be 
obtained by stacking the columns of an OD matrix. Let hy  denote the column vector of 
observed link counts measured at the end of interval h. Further, let 

′
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The general dynamic OD estimation problem with count data can thus be expressed as an 
optimization problem: 
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where z1( ) is a measure of fit between the observed counts y and their modeled  
counterparts ŷ  and z2( ) measures the “distance” between the OD flow estimates x and 
some target flows ax . Target flows are required because the number of equations (i.e. the 
number of independent sensors) is generally far less than the number of variables (i.e. the 
number of unknown OD flows). The model counts are obtained as a function of the 
optimization variables x, from a DTA or a simulator denoted by Assign(x). Non-
negativity (and other constraints such as loader capacity) must also be imposed on x. 
 
The above formulation is hardly new, yet its solution in this general form can be very 
difficult. For instance, ŷ  could be the output of a simulation model. As an example, 
vehicle counts and speeds in the simulation may be collected at exactly the same link 
locations where real-world counts are available. Such simulation outputs generally bear 
complex and non-linear relationships with their input parameters. Consequently, ŷ  and 
the objective function z(x) may not be amenable to many of the classical minimization 
algorithms that require convexity. Analytical gradients will also be hard to obtain in such 
cases. The solution is further challenged by scalability requirements: the size of the OD 
estimation problem grows rapidly with the number of zones in the network and the 
number of time intervals we wish to estimate. 
 
In light of the above challenges, the solution method most often encountered in the 
literature is based on assignment matrices. An assignment matrix is a linear 
approximation of Assign(x) that maps OD flows (from the current and previous departure 
time intervals) to the counts in the current interval h: 

h

h
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p

p
hh vxay += ∑

−= '
      (2) 

where p
ha  maps px  (the departures in interval p) to hy  (the counts in interval h), and p’ 

is the longest trip length in terms of time intervals. Since the mapping is linear, the 
solution of an unconstrained least squares formulation is conceptually simple and 
involves the inversion of a matrix. However the simultaneous estimation of OD flows for 
all (or even multiple) intervals requires the inversion of a massive block-diagonal 
assignment matrix (formed from individual p

ha  matrices) that has been shown to be 
significantly more expensive than inverting just one assignment matrix (Bierlaire and 
Crittin, 2004; Cascetta and Russo, 1997; Toledo et al., 2003). 
 
The strategy thus has been to estimate the OD flows one interval at a time, or sequentially 
(rather than simultaneously), starting from h=1. The contribution of previous departure 
intervals to the current counts are assumed to be fixed, and subtracted from hy : 
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Equation (3) assumes that a major share of hx  reaches the sensors within the same 
(current) interval h. This is unrealistic on heavily congested networks, especially when 
the time intervals are very short. 
 
There are other limitations to the assignment matrix formulation. The solution is far from 
easy if constraints (non-negativity, lower and upper bounds on the OD flows, etc) are 
imposed. Next, the assignment matrix is calculated by assigning the current OD solution 
and tracking vehicle crossings at each sensor. Thus the estimates from each optimization 
step can be inconsistent with the assignment matrices used in that step, requiring costly 
fixed-point iterations. Heuristic fixed-point solutions have been attempted by averaging 
(smoothing) over OD flows, travel times or assignment fractions with mixed results that 
are difficult to generalize. Further, the estimates of the assignment fractions can be 
unreliable for low-flow OD pairs. 
 
The preceding discussion highlights the many theoretical advantages of the general 
formulation. We now present an efficient way to solve the same. 
 
2.1. The SPSA algorithm 
 
The Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm (Spall, 1998, 
1999) provides a direct solution to the general formulation in Equation (1). The modeler 
can thus simultaneously estimate the OD flows of several departure time intervals, while 
preserving the complex connections between the data (i.e. link counts) and the variables 
(i.e. OD flows). SPSA is similar to steepest descent in that a new set of OD flows is 
obtained by moving by a step size along a search direction. However, the search direction 
is based on a stochastic approximation of the gradient at the current solution. 
 
Each SPSA iteration (denoted by the symbol i) consists of two steps.  
 

• First, a search direction at the current solution ix  is calculated as: 
 

( ) ( ) ( )

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

Δ

Δ
Δ

Δ−−Δ+
=

−

−

−

1

1
2

1
1

2
ˆ

in

i

i

i
i

ii
i

ii
i

c
cxzcxz

xg
M

    (4) 

 
where ( )ixĝ  is the gradient approximation at the current solution, iΔ is a vector of 
independent random draws, and ic  is a gradient step size. The Bernoulli 1±  
distribution for iΔ  satisfies the theoretical requirements for convergence (Spall, 
1999). 
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• Once a search direction (gradient approximation) is available, all the OD flow 
variables (from all departure intervals) are updated in a single step by moving a 
distance of ia  along ( )ixĝ : 

( )1 ˆi i i ix x a g x+ = −      (5) 
The SPSA algorithm is a variant of the standard Finite Difference Stochastic 
Approximation (FDSA) approach (Kiefer and Wolfowitz, 1952) in which the gradient is 
evaluated component-wise. But instead of perturbing each variable in turn and re-running 
an assignment, SPSA perturbs all components simultaneously (though independently) 
and approximates the gradient from just two evaluations of the function irrespective of 
the number of variables, n. In comparison, FDSA requires n+1 function evaluations for a 
single gradient calculation (or 2n, if each variable is perturbed once on either side). This 
represents an n-fold improvement in per-iteration efficiency, which is significant when 
each (simulation) assignment can take hours. It should be noted, however, that a few 
(generally far fewer than 10) gradient replications must be averaged to obtain reliable 
search directions. 
 
The efficiency of SPSA has another dimension: the number of iterations to convergence. 
Spall (1998) shows that SPSA and FDSA converge in a similar number of iterations 
(Figure 1), which preserves SPSA’s computational superiority. 
 
SPSA offers other advantages for OD estimation: 
 

• The relationship between the data and the variables is directly captured through 
Assign(x), and there are no linear approximations (such as the assignment matrix). 

• The assignment method i.e. the function Assign(x) may be replaced with any 
model, of any fidelity.  

• The objective function can be supplemented with any available measurements, 
and not just counts. 

 
 

 
Figure 1: Comparing SPSA and FDSA Convergence [Spall, 1998] 
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3. Case study I 
 
The network used in the first case study is shown in Figure 2, and includes freeways, 
signalized arterial/urban streets and ramps. The numbers on Figure 2 indicate the 
locations of link-wide sensors whose traffic data were used in estimating the demand. 
 
The two-hour study period was arbitrarily designated as 7:00 – 9:00 AM. “True” dynamic 
OD demand profiles using 15-minute time intervals were created to generate realistic 
congestions levels on the network. TransModeler’s (Yang and Morgan, 2006; Caliper, 
2007) microscopic simulation assignment was used to generate a single realization of 
traffic counts, which were then archived as the observed data. 
 

 
Figure 2: Study Network 

 
The “true” time-dependent OD matrices were perturbed randomly to generate seed 
matrices to initialize the calibration process. OD flows for all eight departure time 
intervals were estimated simultaneously. Microscopic assignments were used to evaluate 
the objective function z( ) used by the SPSA-based solution algorithm. SPSA parameters 
of a = 0.1 and c = 2.0 were employed. Figure 3 illustrates the progress of the algorithm 
when each gradient approximation involved 7 replications, with the objective function 
improving by nearly 83%. 
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Figure 3: Sample Calibration Progress 

 
The Root Mean Square Normalized (RMSN) statistic was used to evaluate how well the 
solution approach replicated the time-varying data: 
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where N is the number of sensor measurements for each time interval. 
 
Table 1 compares the initial and final fit statistics for each of the eight departure time 
intervals. It can be seen that the solution approach achieves very good results for most of 
the intervals (the first couple of intervals must be treated as a warm-up from an empty 
network). 
 

Interval  1  2  3  4  5  6  7  8 

Initial  12.69  21.96  12.16  16.95  9.05  20.48  14.86  11.62 
Final  7.07  11.29  5.53  5.37  4.85  5.14  6.88  7.89 

Table 1: RMSN Fit Statistics by Time Interval 
 
Multiple calibration runs starting from the same set of inputs showed similar overall 
performance as depicted in Figure 3 and Table 1. However, it was observed that using 
fewer gradient replications (5 and 3 instead of 7) showed progressively poorer final 
solutions, though the RMSN values still remained below 12%. 
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4. Case study II: I-5 corridor, California 
 
Figure 4 illustrates the I-5 subarea that was used to further study the dynamic OD 
estimation problem. Figure 4 (a) indicates the region from which the simulation model in 
Figure 4 (b) was extracted. The subarea is a part of the I-5 corridor through Irvine, 
California. 
 

               
 

Figure 4. I-5 Subarea from (a) Mapquest and (b) TransModeler 
 

TransModeler’s GIS representation of the subarea consists of 760 nodes and 972 links. 
The links were further divided into 1790 segments to accurately depict linear changes in 
cross-section (including lane drops and acceleration/deceleration lanes). Demand was 
loaded between 82 centroid zones and time-varying traffic count data were available from 
323 link-wide loop detectors. 
 
The sensor data were extracted for a whole day from the PeMS database maintained by 
California’s PATH program. Time-dependent counts and detector occupancies were 
obtained for each of the 323 detectors and the counts aggregated to 15-minute values. 
Speeds at select detectors were imputed from the fundamental diagram for validating 
certain simulation parameters. 
 
Traffic observed on the road network at any given time is likely to have originated in 
time intervals prior to the current interval. It is therefore important that the study period’s 
start time coincide with little or no traffic so that boundary effects are minimized. The 
start time was selected as 3:00 AM based on temporal analyzes of vehicle counts across 
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the study area. The same analyses also revealed that the AM peak was achieved around 
7:00-8:00 AM, beyond which the counts typically began to drop. The end of the study 
period was therefore set at 9:00 AM. This 6-hour period was divided into 15-minute 
intervals to capture dynamic OD patterns and departure effects. OD estimation was 
performed with starting matrices derived from a static planning matrix using observed 
count profiles from sensors located close to trip origins. Two matrices (for single-
occupancy and HOV trips) were estimated simultaneously. 
 
Figures 5 through 8 visualize the results of OD estimation using the general formulation 
and SPSA. It can be seen that the counts at 5:00 AM were reproduced with high 
accuracy, ensuring a good loaded network for the subsequent estimation. The fit to the 
data for all subsequent intervals are also adequate, though there is scope for further 
improvement. 
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Figure 5. Counts Comparisons at 5:00 AM 
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Figure 6. Counts Comparisons at 7:00 AM 
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Figure 7. Counts Comparisons at 8:00 AM 
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Figure 8. Counts Comparisons at 9:00 AM 

 
 
5. Conclusion 
 
While sophisticated micro-simulation and dynamic traffic assignment (DTA) models are 
being developed, their practical use requires the specification of OD demand matrices for 
each short departure time interval of 5, 10 or 15 minute duration. The estimation of such 
matrices from traffic data is non-trivial owing to its large-scale and non-linear nature and 
the numerous sources of errors in the traffic data. While several OD estimation studies 
are reported in the literature, they remain in the realm of academic research. In this paper 
we review a recently developed methodology and solution approach for estimating the 
OD matrices for many time intervals simultaneously using sensor count data, and 
illustrate the same through two case studies. The results indicate the potential of the 
approach, while further work is required to ascertain performance with sparser sensor 
coverage and more complex networks. 
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