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ABSTRACT 

LUCE (Linear User Cost Equilibrium) is the new algorithm to solve traffic 
assignment with deterministic route choice available in VISUM. 

The main idea is to seek at every node a user equilibrium for the local route 
choice of drivers directed toward a same destination among the links of its 
forward star. The cost function associated to each one of these travel 
alternatives expresses the average impedance to reach the destination by 
continuing the trip with that link, linearized at the current flow pattern. The 
solution to such linear program in terms of destination flows, recursively 
applied for each node, provides a descent direction with respect to the 
classical sum-integral objective function. The network loading is then 
performed through the corresponding splitting rates, thus avoiding explicit 
path enumeration. 

Exploiting the inexpensive information provided by the derivatives of the link 
costs with respect to link flows, LUCE achieves a very high convergence 
speed that compares favourably to the other methods, while it assigns the 
demand flow of each o-d couple on several paths at once.  

Keywords: deterministic traffic assignment, bush-based approach, linear user 
equilibrium, destination splitting rates, link cost derivatives, fast algorithm 
convergence, multiple path loading, implicit path enumeration. 

 

1 INTRODUCTION 

Although traffic assignment is a rather mature issue in transport modelling, to 
find a precise equilibrium on real networks is still a difficult problem to be 
solved. In practice, the algorithms currently available are not truly satisfactory 
for many applications: they simply don’t converge in reasonable time fine 
enough to allow consistent comparisons between design scenarios. Indeed, 
apparently small errors in the iterative procedure do not allow to appreciate 
the real differences among equilibria and may lead to false conclusions in 
relevant projects, thus vanishing any modelling effort. 

This is a well recognized problem by the recent literature (see, for example, 
Boyce et al., 2004), but is not really acceptable by practitioners, who are 
asking researchers and developers to enhance the algorithm convergence. To 
satisfy this necessity and overcome such a drawback, the main software 
producers in the world are in these days changing their traffic assignment 
procedures (e.g. VISUM, TRANSCAD, EMME), thus animating the 
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international debate and the competition on this topic. 

In this context, LUCE gives a noticeable contribution: it converges between 10 
and 100 times faster than other recent algorithms and allows on large 
networks to reach in few minutes and iterations the relative gap of 10E-8, that 
is considered enough for any application. This result conveys a considerable 
advance in modelling practice, more than in algorithm theory. 

 

After 30 years of Frank-Wolfe domain (LeBlanc, 1973; Nguyen, 1973), the 
seminal work of Bar-Gera (2002) opened the way to a new generation of 
solution methods for deterministic assignment, that exploit the natural partition 
of the Beckmann’s mathematical program (1956) into sub-problems, one for 
each origin. The proposed LUCE algorithm revisits this approach by searching 
along a descent direction obtained through cost equilibration at nodes, for 
each destination – we find more intuitive and informative to consider 
destinations, instead of origins, since these are the aims of travellers. 

The main idea is to seek at every node a user equilibrium (Wardrop, 1952) for 
the local route choice of divers directed toward the destination among the 
links of its forward star. The cost function associated to each one of these 
travel alternatives expresses the average impedance to reach the destination 
by continuing the trip with the link at hand, linearized at the current flow 
pattern. 

To allow recursive computations, only the links that belong to the current bush 
are included in the local choice set – a bush is an acyclic sub-graph that 
connects each origin to the destination at hand. The unique solution to the 
resulting linear user cost equilibrium in terms of destination flows, applied at 
each node of the bush in topological order, provides a descent direction with 
respect to the classical sum-integral objective function of the original “non-
linear” assignment problem. This postulate is proved only with reference to 
any given bush of the destination. To ensure the convergence of the 
procedure towards an equilibrium where all paths of the graph satisfy 
Wardrop’s conditions, the current bush of the destination is changed at the 
beginning of each iteration, by trying whether is possible (the resulting sub-
graph must still be acyclic) to exclude unused links that bring away from the 
destination and to include links that improve shortest paths. 

At each iteration, the proposed algorithm requires no shortest path but two 
visits of the bush links for each destination, that is equal to the complexity of 
the STOCH single pass procedure (Dial, 1971) for the Logit network loading. 
Moreover, contrary to the classical All Or Nothing assignment to shortest 
paths, the network loading map resulting from the application of the LUCE 
algorithm is a one-to-one function, that combined with the arc cost function 
yields a well-defined fixed point operator, thus offering both computational and 
theoretical advantages. In conclusion, exploiting the inexpensive information 
provided by the derivatives of the arc costs with respect to link flows, LUCE 
presents a higher convergence speed than the existing methods, both in 
terms of runtime and iterations. 
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2 MATHEMATICAL FORMULATION 

The transport network is represented through a directed graph G = (N, A), 
where N is the set of the nodes and A ⊆ N×N is the set of the links. 

 

We adopt the following notation: 

fij   total flow on link ij∈A, generic element of the (|A|×1) vector f ;  

cij   cost of link ij∈A, generic element of the (|A|×1) vector c ; 

cij( fij)  cost function of link ij∈A , 

Z ⊆ N set of the zone centroids ; 

Dod  demand flow between origin o∈Z and destination d∈Z, generic 
element of the (|Z|2×1) vector D, that is the o-d matrix in row major order ; 

Kid   set of the acyclic paths between node i∈N and destination d∈Z ; 

K = ∪o∈Z ∪d∈Z Kod  is the set of paths available to users ; 

δij
k   is 1, if link ij∈A belongs to path k, and 0, otherwise – for k∈K, this is 

the generic element of the (|A|×|K|) matrix ∆∆∆∆ ; 

λod
k  is 1, if path k∈K connects origin o∈Z to destination d∈Z (i.e. k∈Kod), 

and 0, otherwise – this is the generic element of the (|Z|2×|K|) matrix ΛΛΛΛ ; 

Fk   flow on path k∈K, generic element of the (|K|×1) vector F ; 

Ck   cost of path k – for k∈K this is the generic element of the (|K|×1) 
vector C ; 

Wi
d  minimum cost to reach destination d∈Z from node i∈N ; 

|S|  cardinality of the generic set S ; 

 

There are two fundamental relations between flow variables. The flow on link 
ij∈A is the sum of the flows on the paths that include it: 

fij = ∑k∈K δij
k ⋅ Fk ;  (1) 

the travel demand between origin o∈Z and destination d∈Z must be equal to 
the sum of the flows on the paths that connect them: 

∑k∈Kod Fk = Dod ;  (2) 

moreover, all path flows must satisfy non-negativity constraints: Fk ≥ 0, k∈K. 

As usual, we assume additive path costs, i.e. the impedance Ck associated by 
users to a given path k is the sum of the costs on the links that belong to it: 

Ck = ∑ij∈A δij
k ⋅ cij . (3) 

By definition, the minimum cost to reach destination d∈Z from node i∈N is the 
cost of any shortest path that connects them: 

Wi
d = min{Ck : k∈Kid} . (4) 
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In the classical case of separable arc cost functions, fixed demand and 
deterministic route choice, the traffic assignment problem can be formalized 
through the following program: 

min{ω(f) = ∑ij∈A 0∫
 fij

cij( f ) ⋅ d f: f∈Θ}, (5) 

where: 

Θ = {f∈ℜ|A|: f = ∆∆∆∆⋅F, F∈Ω} is the set of feasible link flows, and 

Ω = {F∈ℜ|K|: F ≥ 0, ΛΛΛΛ⋅F = D} is the set of feasible path flows. 

To ensure the existence and uniqueness of the solution to problem (5) we 
assume that: 

cij( fij)  is non-negative, continuous, strictly monotone increasing ; 

Kod   is non-empty ; 

Dod   is non-negative . 

 

Problem (5), which is convex, can also be expressed in terms of path flows as 
follows: 

min{Φ(F) = ∑ij∈A 0∫
∑k∈K δij

k ⋅ Fk

cij( f ) ⋅ d f: F∈Ω} , (6) 

where, although the solution uniqueness does not hold anymore, the 
convexity of the mathematical program is preserved, implying that any 
descent algorithm in the space of path flows will provide one of the global 
solutions, which then make up a convex set. 

The relevance of program (6) to traffic assignment stands from the fact that, in 
the case of additive path costs, its first order (necessary) conditions coincide 
with the following formulation of the deterministic user equilibrium based on 
Wardrop’s Principles, for each o∈Z and d∈Z: 

Fk ⋅ (Ck - Wo
d) = 0  ,           ∀k∈Kod , (7.1) 

Ck ≥ Wo
d  ,                          ∀k∈Kod , (7.2) 

Fk ≥ 0  ,                              ∀k∈Kod , (7.3) 

∑k∈Kod Fk = Dod . (7.4) 

Based on (7): 

- all used paths (Fk > 0) have minimum cost (Ck = Wo
d) ; 

- any unused path (Fk = 0) has not a lower cost (Ck ≥ Wo
d) . 

We have a user equilibrium if conditions (7) hold jointly for each o-d couple, 
under the condition that each path cost Ck is a function (potentially) of all the 
path flows F through the arc cost function: 

Ck = ∑ij∈A δij
k ⋅ cij(∑k∈K δij

k ⋅ Fk) , in compact form C = ∆∆∆∆T⋅c(∆∆∆∆⋅F) . (8) 

 

Since the gradient of Φ(F) is C = ∆∆∆∆T⋅ c(∆∆∆∆⋅F), by linearizing the objective 
function of problem (6) at a given a point F∈Ω, for X → F we obtain: 
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Φ(X) = Φ(F) + CT⋅(X-F) + o(||X-F||).  (9) 

From equation (9) we recognize that a direction E-F is descent if and only if: 

CT⋅(E-F) < 0. (10) 

In other words, to decrease the objective function and maintain feasibility we 
necessarily have to shift path flows getting a lower total cost with respect to 
the current cost pattern, i.e. move the current solution from F towards an E∈Ω, 
such that CT⋅E < CT⋅F, where C = ∆∆∆∆T⋅c(∆∆∆∆⋅F); the necessity derives from the 
convexity of the problem, since in this case at any point X such that CT⋅(X-F) > 0 
we have: Φ(X) > Φ(F). 

This approach to determine a descent direction can be applied to each o-d 
pair separately, to each destination, or to the whole network jointly. Based on 
the above general rule, setting the flow pattern E by means of an all-or-
nothing assignment to shortest paths clearly provides a descent direction. If 
such a direction is adopted for all o-d pairs of the network jointly, and a line 
search is applied along it, we obtain the well known Frank-Wolfe algorithm. 
However, at equilibrium each o-d pair typically uses several paths, implying 
that any descent direction that loads a single path is intrinsically myopic; in 
fact such algorithms tail badly. 

 

Once we get a feasible descent direction E-F, since Ω is convex, we can 
move the current solution along the segment F+α⋅(E-F) and take a step 
α∈(0,1] such that the objective function of problem (6), redefined as φ(α) = 
Φ(F+α⋅(E-F)), is sufficiently lowered. In this respect, knowing that Φ is C1 and 
convex, and thus also φ is such, we can consider the following alternative 
approaches:  

- minimize φ through a line search along the segment, e.g. by means of the 
bisection method; 

- minimize an approximation of φ along the segment, e.g. the quadratic 
interpolation driven by the derivative at α = 0 and α = 1, i.e.           
α = min{1, 1 / (1 - ∂φ(1)/∂α / ∂φ(0)/∂α)} ; 

- determine the largest step α = 0.5k, for any non-negative integer k, such that: 
∂φ(0.5k)/∂α < 0 , i.e. by an Armijo-like search. 

All the three methods require to compute the directional derivative of the 
objective function: 

∂φ(α)/∂α = c(∆∆∆∆⋅(F+α⋅(E-F)))T ⋅ ∆∆∆∆⋅(E-F) , (11) 

which implies to evaluate the arc costs at the candidate flows F+α⋅(E-F), and 
then the difference between the corresponding total costs obtained with the 
flows E and F; if such total costs with E are smaller than those with F, then 
∂φ(α)/∂α is negative so that the optimal solution is more toward E, and vice 
versa. 
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3 LOCAL USER EQUILIBRIUM 

In this section we present a new method to determine a descent direction, 
which is based on local shifts of flows that satisfy the total cost lowering rule, 
by exploiting the inexpensive information provided by the derivatives of the arc 
costs with respect to link flows. 

In the following we will focus on users directed to destination d∈Z and in 
particular on their local route choice at a generic node i∈N. 

At equilibrium only shortest paths are utilized to reach d. Since the arc cost 
functions are strictly monotone increasing (i.e. an arc cost can be null only if 
its flow is such), these paths make up an acyclic sub-graph of G, that is a 
(reverse) bush rooted at d. On this base, when seeking a descent direction, in 
the following we can limit our attention to the current bush B(d) ⊆ A and 
introduce a updating mechanism to make sure that eventually any shortest 
path will be included into it. 

For the topology of the bush we will use the following notation:  

FSB(i, d) = {j∈N: ij∈B(d)} the forward star of node i∈N made-up by nodes that 
can be reached from it through links belonging to the current bush B(d) of 
destination d∈Z; 

BSB(i, d) = {j∈N: ji∈B(d)} the backward star of node i∈N made-up by nodes 
that can reach it through links belonging to the current bush B(d) of 
destination d∈Z. 

For the flow pattern we will use the following notation:  

fij
d   current flow on link ij∈A directed to destination d∈Z ; by construction it 

is fij
d = 0 for each j∉FSB(i, d) ; moreover it clearly is: fij = ∑d∈Z fij

d ; 

fi
d = ∑j∈FSB(i, d) fij

d  current flow leaving node i∈N directed to destination 
d∈Z ; 

yij
d = fij

d / fi
d   current flow proportion on link ij∈A directed to destination 

d∈Z , if fi
d > 0;      yij

d = 0 , otherwise ; 

eij
d  descent direction, in terms of flow on link ij∈A directed to destination 

d∈Z ;  

ei
d   descent direction, in terms of flow leaving node i∈N directed to 

destination d∈Z ; 

xij
d  = eij

d / ei
d  descent direction, in terms of flow proportion on link ij∈A 

directed to destination d∈Z. 

For the cost pattern we will use the following notation:  

Ci
d  average cost to reach destination d∈Z from node i∈N ; 

gij   cost derivative of link ij∈A ; 

Gi
d  derivative of the average cost to reach destination d∈Z from node 

i∈N . 
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The average cost Ci
d is the expected impedance that a user encounters by 

travelling from node i∈N to destination d∈N. In (12.1) it is defined recursively, 
as if drivers utilize paths accordingly with the current flow proportions; while 
(12.2) defines the iterate for the idle case as the locally best choice: 

if fi
d > 0 , then Ci

d = ∑j∈FSB(i, d) yij
d ⋅ (cij + Cj

d) , else (12.1) 

Ci
d = min{cij + Cj

d: j∈FSB(i, d)} . (12.2) 

In the following we assume that the cost function cij( fij) is differentiable for 
each link ij∈A: 

gij = ∂cij( fij) / ∂fij .  (13) 

Under the assumption that an infinitesimal increment of flow leaving node i∈N 
directed towards destination d∈Z would diverge accordingly with the current 
flow proportions, we have : 

if fi
d > 0, then Gi

d = ∂Ci
d / ∂fi

d = ∑j∈FSB(i, d) yij
d 2 ⋅ (gij + Gj

d) , else (14.1) 

Gi
d = ∑j∈FSB(i, d) [Ci

d = cij + Cj
d] ⋅ (gij + Gj

d) / ∑j∈FSB(i, d) [Ci
d = cij + Cj

d] , (14.2) 

where in (14.1) the derivatives gij + Gj
d are scaled by the share yij

d of ∂fi
d 

utilizing link ij and then passing through node j, that jointly with the flow 
proportion involved in the averaging yields the square yij

d 2; while (14.2) in the 
idle case expresses the mean of all the derivatives gij + Gj

d for which link ij 
gives a locally best choice. 

The average costs and their derivatives can be computed by processing the 
nodes of the bush in reverse topological order, starting from Cd

d = Gd
d = 0. 

 

We now address the local user equilibrium for the ei
d drivers directed to 

destination d∈Z, whose available alternatives are the links of the bush exiting 
from node i∈N. To each travel alternative we associate the cost function:  

vij
d(eij

d) = (cij + Cj
d) + (gij + Gj

d) ⋅ (eij
d - yij

d ⋅ ei
d) ,  (15) 

resulting from a linearization at the current flow pattern of the average cost 
encountered by a user choosing the generic link ij, with j∈FSB(i, d). 

This problem can be formulated, in analogy to (7), by the following system of 
inequalities: 

eij
d ⋅ (vij

d(eij
d) - Vi

d) = 0  ,           ∀j∈FSB(i, d)  , (16.1) 

vij
d(eij

d) ≥ Vi
d  ,                           ∀j∈FSB(i, d)  , (16.2) 

eij
d ≥ 0  ,                                     ∀j∈FSB(i, d)  , (16.3) 

∑j∈FSB(i, d) eij
d = ei

d  , (16.4) 

where we denote: 

Vi
d  local equilibrium cost to reach destination d∈Z from node i∈N ; 

vij
d   cost of the local alternative j∈FSB(i, d) to reach destination d∈Z from 

node i∈N. 

If ei
d = 0, the solution to the above problem is trivially: eij

d = 0, for each 
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j∈FSB(i, d). Consider then the case where ei
d > 0. To improve readability, 

problem (16) can be rewritten as: 

xj ⋅ (aj + bj ⋅ xj - v) = 0  ,          ∀j∈J  , (17.1) 

aj + bj ⋅ xj ≥ v  ,                        ∀j∈J  , (17.2) 

xj ≥ 0  ,                                    ∀j∈J  , (17.3) 

∑j∈J xj = 1  , (17.4) 

where: 

J = {(i, j, d): j∈FSB(i, d)}  ; 

aj = (cij + Cj
d) - (gij + Gj

d) ⋅ ei
d ⋅ yij

d  ; 

bj = (gij + Gj
d) ⋅ ei

d  ; 

xj = eij
d / ei

d  ; 

v = Vi
d  . 

Applying the usual Beckmann approach we can reformulate the equilibrium 
problem (17) as the following quadratic program: 

min{∑j∈J 0∫
 xj

(aj + bj ⋅ x) ⋅ dx: x∈X} = min{∑j∈J aj ⋅ xj + 0.5 ⋅ bj ⋅ xj
2: x∈X} , (18) 

where X is the convex set of all vectors satisfying the feasibility conditions 
(17.3) and (17.4). The gradient of the objective function is a vector with 
generic entry aj + bj ⋅ xj , and then the Hessian of the objective function is a 
diagonal matrix with generic entry bj . Therefore, if all entries bj are strictly 
positive, the Hessian is positive definite and problem (18) has a unique 
solution. In order to ensure such a desirable property we assume, without loss 
of generality, that the derivates gij are strictly positive for all links ij∈A. Indeed, 
since the arc cost functions are strictly monotone increasing, gij can be null 
only if also fij

d is null; therefore, at the equilibrium bj = 0 implies xj = 0. In 
practice we can substitute any gij = 0 with a small ε. 

To solve problem (17) we propose the following simple method. In order to 
satisfy condition (17.1), either it is xj = 0, or it is aj + bj ⋅ xj = v. Let H ⊂ J be the 
set of alternatives with positive flow, that is H = { j∈J: xj > 0}. For any given H, 
the solution in terms of flow proportions is immediate, since from (17.4) it is 
∑j∈H (v - aj) / bj = 1; therefore we have: 

v = (1 + ∑j∈H aj / bj) / (∑j∈H 1 / bj)  , (19.1) 

xj = (v - aj) / bj  ,                    ∀j∈H  , (19.2) 

xj = 0  ,                                   ∀j∈J \ H  . (19.3) 

The flow proportions provided by (19) implicitly satisfy (17.4), but to state that 
the chosen H yields the actual solution of problem (17), we still must ensure 
the following conditions: aj < v, for each j∈H (as required by (17.3), since       
xj = (v - aj) / bj > 0), and aj ≥ v, for each j∈J \ H (as required by (17.2), since    
xj = 0). This implies that at the solution the value of v resulting form (19.1) 
must partition the set J into two sub-sets: the set H, made up by the 
alternatives j such that aj < v , and its complement J \ H, made up by the 



©  Association for European Transport and contributors 2009 

 

9 

alternatives j such that aj ≥ v. 

At a first glance the problem to determine the set H of alternatives with 
positive flow may seam to be combinatorial; however, this is not the case. 
Indeed, equation (19.1) can be rewritten as a recursive formula, thus showing 
the effect of adding an alternative k to the set H: 

v(H ∪ {k}) = (v(H) ⋅ ∑j∈H 1 / bj + ak / bk) / (∑j∈H 1 / bj + 1 / bk) . (20) 

The right hand side of (20) can be interpreted as an average between v(H) 
and ak with positive weights ∑j∈H 1 / bj and 1 / bk . Therefore, the local 
equilibrium cost increases by adding to H any alternative k for which ak is 
higher than the current value v(H), and vice versa it decreases by removing 
from H such alternatives. Consequently, the correct partition set H can be 
simply obtained by removing iteratively to an initially complete set each 
alternative j∈H such that aj > v, i.e. each alternative for which (19.2) yields a 
negative flow proportion. 

 

To obtain a complete pattern of link flows ed for a given destination d∈Z 
consistent with the local user equilibrium we simply have to solve problem 
(16) at each node i∈N\{d} proceeding in topological order, where the node 
flow is computed as follows: 

ei
d = ∑j∈BSB(i, d) eji

d + Did . (21) 

In section 2 it has been shown that a given direction is descent if, and only if, 
(10) holds true, which in terms of link flows directed to destination d∈Z 
becomes: 

∑ij∈A cij ⋅ (eij
d - fij

d) < 0 , (22) 

expressing that the shift of flow from fd to ed must entail a decrease of total 
cost with respect to the current cost pattern. The proof that the proposed 
procedure provides a descent direction goes beyond the scope of this note 
and the interested reader is referred to Gentile G. (2009). 

A detailed description of the assignment algorithm is also presented in the 
above reference. Below we present some numerical results assessing the 
performance of the method. 

 

4 NUMERICAL RESULTS 

In this section we analyze the convergence of the proposed LUCE algorithm.  

Typically, the distance of the current flow patter f from the equilibrium is 
measured in terms of the relative gap ρ(f) = 1 - W(c(f))T⋅D / c(f)T⋅f, where 
W(c(f))T⋅D are the total minimum costs, while c(f)T⋅f are the total equilibrium 
costs. Based on Wardrop’s First Principle, the relative gap tends to zero at 
equilibrium, and is always smaller than one. As an alternative, the precision of 
convergence can be expressed by the maximum cost difference between 
used paths, which also tends to zero at equilibrium. 

In the following, we present the behaviour of LUCE on the eight networks 
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synthetically described in Table 1, showing the evolution of both the relative 
gap and the maximum gap in terms of iterations and run time (referred to a 
2.0GHz cpu). These benchmarks, cover a wide range of possible cases, from 
small to very large (in terms of links and zones cardinality), from almost 
uncongested to heavily congested (∆T denotes the relative increment of total 
costs from zero flow to equilibrium). 

 

Table 1. Benchmarks considered in the convergence analysis. 

network links zones ∆T% 
sioux falls 76 24 148 
dial 80 4 135 
cosenza 524 36 17 
winnipeg 2836 138 17 
lynnwood 3414 139 43 
roma 9369 453 341 
chicago 39018 1768 44 
philadelpia 40003 1489 31 

 

In all instances, LUCE converges to a satisfactory ρ = 10E-5 (many experts 
agree that beyond this level, no practical modifications of the solution are 
usually appreciated) with very few iterations (between 10 and 20), and with 
some more iterations (between 20 and 40) reaches its limit of numerical 
instability, that is ρ = 10E-8 for 16 digit computers. The decreasing pattern is 
smoother for the relative gap (Figure 1), that is an aggregated indicator of 
convergence, than for the maximum gap (Figure 2), that expresses a worst 
case distance from the equilibrium. 

 

Relative gap of LUCE for different networks
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Figure 1. Convergence of LUCE in terms of relative gap. 



©  Association for European Transport and contributors 2009 

 

11 

Maximum gap of LUCE for different networks
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Figure 2. Convergence of LUCE in terms of maximum gap. 

In general, LUCE appears to be a very robust method, because the relative 
computation time (run time dived by the number of links and by the number of 
zones) that is required to obtain either a precise or a loose solution does not 
vary considerably for the different networks, as depicted in Figure 3, although 
heavy congestion implies longer run times, as everyone can expect (see the 
case of the Rome). This reflects the linear complexity of the algorithm, and 
means that the modeller can profit of making a rough estimate on run times in 
advance. Thus LUCE matches the expectations of practitioners, who can well 
accept that computing times grow proportionally with the dimension of the 
problem in terms of supply (i.e. links) and demand (i.e. zones). Actually, with 
path based methods the problem complexity scales instead linearly in terms of 
od-couples and quadratically in terms of zones. Moreover, the overall 
convergence seems to be fairly linear, despite some convexity is practically 
unavoidable in any traffic assignment algorithm for large networks with several 
destinations. 
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Figure 3. Relative computation time of LUCE for six real networks. 
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To choose the step method used in combination with the descent direction 
provided by LUCE we have compared on the above benchmarks the three 
algorithms proposed at the end of section 2: line search by bisection, analytic 
minimization of the quadratic interpolation, Armijo rule. Best performances are 
obtained through either the second or the third method, as depicted in Figure 
4 with reference to the Chicago network. However, the quadratic interpolation 
benefits from the theoretical property of not requiring line search iterations 
within the step method, and in fact it is sometimes slightly faster than the 
Armijo rule, so that it was preferred to the latter in the specification of the 
assignment algorithm. 

Combining LUCE with different step methods for Chicago
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Figure 4. Convergence of LUCE in combination with three step methods on 
the Chicago network. 

The substantial equivalence between the Armijo rule and the quadratic 
interpolation derives also from the fact that for most destinations at each 
iteration the unitary step provided by the LUCE direction is optimal, as 
depicted in Figure 5. 

Step length of LUCE for different networks
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Figure 5. Average step length among all destinations during the iterations of LUCE. 
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In Figure 6 we plot the relative gap against the run time to analyze the 
convergence of LUCE on the Chicago network for four levels of demand, 
obtained scaling by 0.5, 1.0, 1.5 and 2.0 the original o-d matrix. As expected 
the speed of convergence decreases noticeably with the relevance of 
congestion, showing in this case an even proportionality: about 10 times the 
total cost increment (from 44% to 415%) requires about 10 times the 
computation effort (form 28 min to 214 min). 

 

Sensitivity of LUCE to the demand for Chicago
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Figure 6. Convergence sensitivity of LUCE to congestion on the Chicago 
network. 

Finally, in Figure 7 we compare the convergence performances of five 
different algorithms on the Chicago network. Frank Wolfe by LeBlanc (1973) 
and Nguyen (1973) is here reported just to recall that a precise solution of the 
assignment problem requires in practice more specialized procedures. 

Bar-Gera’s OBA (2002) takes into account link and node cost derivates with 
the aim of calculating Newton-type flow shifts among the paths of the bush, 
thus obtaining a descent direction in the space of link flows. The efficient 
computation of this second-order formulation requires to introduce an 
approximation of the exact analytical expressions. Moreover, the resulting flow 
shifts may lead to violations of non-negativity constraints, thus requiring some 
truncations. It’s worth noting that LUCE exploits the same information, i.e. cost 
derivatives, but instead of seeking some parallelism to non-linear optimization 
techniques like the OBA, it adopts an ad-hoc approach founded on the 
intuitive ideas of local equilibrium and first-order approximation.  

Algorithm B proposed by Dial (2006) is a link based procedure that shifts trips 
from max- to min-paths to make their cost difference minima. 

The Projected Gradient algorithm, recently revised by Florian (2009), is a path 
based method that regards their costs as the gradient of the sum integral 
objective function. 
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Convergence of different algorithms for Chicago
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Figure 7. Performance comparison of LUCE to other four assignment 
algorithms on the Chicago network, whose convergence patterns are retrieved 
from papers and presentations. 
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