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Abstract 
 
The increased participation of the private sector in the delivery of transport 
infrastructure projects has increased the emphasis on understanding the 
accuracy and uncertainty of traffic demand forecasts. Transport models which 
provide these forecasts rely on simplified assumptions usually involving a 
combination of physical, socioeconomic, environmental and individual factors for 
a modelled base and future time period. Uncertainty in the value of input 
parameters and their conditional relationships results in uncertainty in the outturn 
forecasts. The accuracy of model predictions is normally tested through a 
number of quantitative and statistical methods. This paper presents a summary 
of the approaches used to model uncertainty in practice including scenario 
testing, sensitivity testing and statistical risk analysis using Monte-Carlo methods. 
However, other techniques are now available, and may offer superior insight into 
the structure of the underlying problem. In this paper, Bayesian belief networks, 
together with Monte Carlo Markov Chain techniques, are applied as an 
alternative method for modelling uncertainty in transport modelling. We illustrate 
the technique on a simplified toll road case study, based on a motorway in São 
Paulo, Brazil, in which we compute equilibrium solutions for traffic flow, travel 
time and cost for fixed demand and elastic demand problem formulations. The 
paper concludes on a comparison between the Bayesian belief network and a 
more conventional sensitivity analysis and discusses the relative merits of each 
approach. 
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1 Introduction 
 
The traffic forecasts produced by transport models are subject to a number of 
sources of uncertainty including errors in the measurement of input data, errors in 
the estimated value of model parameters and errors in the specification of the 
underlying models themselves. Ideally, analysts would wish to understand the 
separate and collective impact of these errors on the uncertainty of model 
forecasts, so as to be able to attach credible confidence intervals to model 
forecasts and optimise the allocation of study resources. However, in large model 
systems, the interaction between each of these sources of error can be very 
complex, making the analysis of propagation of uncertainty through the modelling 
process extremely challenging. Nevertheless, the increased participation in 
recent years of the private sector in the delivery of transport infrastructure 
projects has raised the requirement for accurate traffic demand forecasts and led 
to renewed interest in the analysis of model uncertainty. 
 
The classical approaches to addressing these issues in the transport literature 
include scenario analysis, sensitivity testing and statistical risk analysis using 
Monte-Carlo methods. However, all these approaches have significant 
limitations. In this paper we propose a new approach which is based on Bayesian 
statistical principles which we believe offers superior insight into the structure of 
the underlying problem. Our approach involves expressing the transport demand 
model as a Bayesian belief network (BBN). BBNs are powerful tools for Bayesian 
statistical inference, which enable the representation of causal dependencies 
between sets of random variables and the computation of the joint posterior 
distribution of these random variables, conditional on prior distributions of each 
variable and data. The computation of the posterior joint distribution is performed 
using Markov Chain Monte Carlo (MCMC) methods, which involve approximating 
the desired joint posterior distribution (which is generally analytically intractable) 
by a series of simpler distributions, formed from the product of tractable 
conditional distributions. This technique permits the flexible representation of a 
range of different sources of uncertainty and the consistent propagation of this 
uncertainty through the model system. 
 
The paper is divided into a number of sections. Following the introduction, the 
second section provides a brief overview of the existing literature on the 
modelling of uncertainty in transport modelling, highlighting the strengths and 
weaknesses of the different approaches. The third section briefly introduces the 
BBN methodology and discusses some of the specific issues associated with its 
application to typical transport modelling contexts. The fourth section presents an 
application of the BBN approach to a toll road case study in São Paulo, Brazil. In 
this application we explicitly formulate a simple equilibrium transport model as a 
BBN and use this formulation to explore the propagation uncertainty in traffic data 
and model parameters into revenue forecasts. The fifth section summarises a 
number of test results from the model including a comparison between the BBN 
and a more conventional sensitivity analysis and discusses the relative merits of 
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each approach. The paper concludes with a summary of the main findings and 
directions for future research. 
 
2 Transport Model Forecast Uncertainty 
 
2.1  Forecasting Risk 
 
Transport infrastructure projects generally require a large capital investment from 
either the public or private sector. As with any investment there is an element of 
risk, and a transport infrastructure enterprise is no exception. Transport 
infrastructure project finance has developed rapidly over the last 20 years and 
risk evaluation – commercial, macro-economic and political – is at its heart 
(Yescombe, 2002). A key input into the business and financial case for these 
projects are project cash flows which, for most projects, are related to forecast 
traffic demand. Inaccurate traffic forecasts (Flyvbjerg et al., 2006; Standard & 
Poor’s, 2002, Bain et al., 2005) can lead to project failures and bankruptcies 
(World Bank, 2006). 
 
2.2  Transport Project Forecasts 
 
Traffic forecasts are produced by transport models. These models are created 
from data sources, such as surveys, and attempt to capture ‘typical traffic 
conditions’ of a particular project in a base model. Future time-period models are 
then created based on forecast changes in explanatory variables. These project 
forecasts are normally provided as point estimates with no direct reference to 
their level of variability, or uncertainty. 
 
Uncertainty in transport model forecasts arises broadly from two error sources: 
the model inputs and the models themselves (De Jong et al., 2005). Where input 
uncertainty can include the future change in socio-economic variables or other 
exogenous factors; and model uncertainty can include specification error or error 
due to using parameter estimates instead of true values. A further distinction can 
be applied between those factors that affect the base traffic model and those that 
affect the future model forecasts. Table 2.1 shows the common types of input 
and model specification uncertainties.  
 

Table 2.1: Input and Model Uncertainties by Project  Modelled Years 
 

Base Year Factor Future Year Factors 
Quality of base data/traffic flows GDP 
Matrix development/estimation GDP/car ownership elasticity 

Model specification Growth in value of time 
Estimates of journey time savings Toll tariff 

Value of time estimates Growth in toll tariff 
Assignment/route choice techniques Effect of other road schemes 

Model calibration parameters Induced traffic 
 Traffic ramp-up 

Source: (Brett et al., 1999; Boyce, 1999; Boyce et al., 2003) 
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The uncertainty embedded in individual input factors and in model structure is 
propagated into the uncertainty in overall traffic forecasts. Error propagation 
depends on the structure of the underlying transport model. In one of the few 
studies to systematically investigate this question, Zhao and Kockelman (2001) 
quantified uncertainty propagation through a conventional four-stage transport 
demand model process (trip generation, trip distribution, mode choice and route 
assignment). Through comparison of model outputs from input variation, the 
research concluded that results from transport demand models may be highly 
uncertain. Uncertainty was found to compound over the four modelling stages of 
transport travel demand. 
 
2.3  Approaches to Modelling Uncertainty in Transpo rt Model Forecasts 
 
There are a number of general approaches to assess the degree of forecasting 
risk in any type of project or investment analysis. These include scenario testing, 
sensitivity testing and risk analysis (Ross et al., 2008). 
 
The most basic form of analysis used to assess uncertainty in traffic forecasts is 
scenario testing. This is where a number of alternative scenarios are developed, 
based on the simple variation of key model assumptions around a “central case” 
(or “base case”) forecast. Sensitivity analysis is a variation on scenario testing 
which is a series of model runs for a range of input parameters and used to 
pinpoint the variables where forecasting risk is most severe.  
 
More advanced simulation analysis attaches confidence intervals to the 
forecasts, by assuming statistical distributions for the model input parameters. 
This method is referred to as risk or Monte Carlo analysis and is based on 
statistical sampling theory. Monte Carlo analysis models the consequences of 
uncertainty in inputs and correlations between these inputs. It involves replacing 
point values with probability distributions of possible values for key inputs. 
Typically, the choice of probabilistic inputs will be based on prior sensitivity 
testing. Sampling is then repeated randomly a large number of times. The results 
consist of a set of probability distributions showing how uncertainties in key 
inputs might impact on key outcomes. Monte Carlo sampling is described in 
traffic and revenue forecasting applications in De Jong et al. (2005), Brett and 
Snelson (1999) and Boyce and Bright (2003). 
 
There are shortcomings to the scenario, sensitivity and conventional risk analysis 
approaches. No developed methodology or model incorporates these 
uncertainties through the traffic model system. Instead, conventional risk analysis 
relies upon obtaining a relationship between model inputs and outputs based on 
sensitivity testing and combining these relationships. Other techniques are 
available that may offer superior insight into the structure of the underlying 
problem. This paper demonstrates an alternative approach using BBN, together 
with MCMC techniques, for modelling uncertainty in transport modelling and 
forecasting. 
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3 Bayesian Analysis for Modelling Uncertainty  
 
Bayesian analysis is an important branch of statistics based on Bayes’ theorem 
(Bayes, 1793; Raiffa, 1968). This theorem relates the prior and posterior 
probabilities for stochastic events. The theorem states how prior probabilities, 
combined with new information from a test or sample, can be used to update or 
revise beliefs to yield posterior probabilities. Given a prior distribution for the 
unknown parameter θ – representing previous knowledge or belief – and the 
observed sample data x, a posterior distribution of θ, is calculated as:  
 

( | ) ( )
( | )

( )

p x p
p x

p x

θ θθ =  

  
where: θ is the unknown parameter 
 p(θ) is the prior distribution of θ 
 x is a sample drawn from underlying distribution 

p(x|θ) is the sampling density of x 
p(θ|x) is the posterior distribution of x 
 

The sampling density p(x|θ) is known as the likelihood function with x fixed as θ 
varies. Thus, the posterior distribution for θ takes into account both prior 
distribution for θ and the prior probability of observed data x. 
 
A BBN is a probabilistic graphical model and is a way of formalising probabilistic 
dependencies between a set of variables. It is a powerful tool for modelling 
probabilistic inference. The approach calculates posterior distributions based 
upon a representation of causal dependencies to random variables of interest 
(Jensen, 1996;Montironi et al., 1996; Gilks et al., 1996). BBNs have been used 
as a means of modelling causal uncertainty in a diverse range of domains in 
industry, computing, services and natural and social sciences (Pourret et al., 
2008; Scollnik, 2001; Berger, 2000) 
 
BBN analysis emerged as a result of mathematical research carried out in the 
1980s (Pourret et al., 2008), but was computationally demanding. Advances in 
the area of approximation methods in the early 1990s (Scollnik, 2001), including 
the emergence of computer intensive MCMC sampling methods, allowed 
Bayesian analysis to be applied to a wide range of problems. 
 
The MCMC algorithms provide a set of statistical tools that enable the estimation 
of potentially complex statistical models based on probabilistic inference (Berger, 
2000). MCMC methods exploit the relationships of conditional independence 
encoded in a graphical model such as a BBN to enable samples to be drawn 
from complex underlying distributions by means of sampling sequentially from 
simpler component distributions. MCMC methods were first introduced by 
Metropolis et al. (1953) and subsequently developed by Hastings (1970). A 
variety of different sampling strategies have been developed, of which the most 
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commonly used are the Metropolis-Hastings algorithm and the Gibbs sampler 
(Brooks, 1998; Geman et al., 1984)  
 
In the field of transport studies, Verhoeven et al. (2004) used a BBN to mode 
choice and Lindveld et al. (2006) used BBNs to perform data fusion. However, to 
date there appear to have been no applications of BBN techniques to study the 
propagation of uncertainty in transport models. 
 
4. Deterministic Model Example Application to Toll Roads 
 
4.1  Toll Road Case Study: São Paulo Rodoanel Oeste  
 
A simple deterministic traffic model was developed to characterise and model 
uncertainty for a typical toll road context. The simplified case study is based on 
the Rodoanel Oeste1 in São Paulo, Brazil. Figure 4.1 shows the Rodonael Oeste 
toll road and its free congested competing route.  
 

 
Figure 4.1: Simplified Toll Road Case Study: São Pa olo Rodoanel 

 
In conventional transport models, a network equilibrium solution between 
transport supply and demand is found through the redistribution of trips in an 
iterative distribution and assignment algorithm. In order to allow the application of 
a BBN, a model was developed that could compute a deterministic equilibrium 
solution algebraically. 
 
                                                 
1 The Rodoanel Oeste is a 32km motorway which is operated by Concessionária do Rodoanel Oeste under 
terms of a 30-year PPP contract with the State of São Paulo. The toll road operation started in December 
2008 after a competitive bid process. 
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4.2.  Notation 
 
vcurr   – actual speed     [km/h] 
v0   – free flow speed     [km/h] 
Lx   – length of route X    [km] 
Ly   – length of route Y    [km] 
tcurr   – actual travel time on a route  [h] 
t0   – free flow travel time on a route  [h] 
Q  – total travel demand   [veh] 
α  – demand constant    [-] 
β  – demand constant    [-] 
VOT  – value of time for travellers  [$/h] 
x   – flow on route X    [veh] 
y   – flow on route Y    [veh] 
xmax   – capacity of route X   [veh/h] 
ymax   – capacity of route Y   [h/veh] 
φx  – capacity reciprocal of route X  [h/veh] 
φy  – capacity reciprocal of route Y  [veh/h] 
TOLLx   – toll per km on route 1  [$/km] 
TOLLy   – toll per km on route 2  [$/km] 
cx   – cost of travelling on route X  [$] 
cy   – cost of travelling on route Y  [$] 
C   – travel cost at equilibrium    [$] 
 
4.3.  Model Specification 
 
4.3.1  Supply 
 
The case study considered here represents the transport supply side of the 
model by a road network that consists of two links: untolled (x) and tolled (y) 
routes respectively. The generalised link costs are, in part, a function of a number 
of physical attributes and tolls. All time and monetary costs were converted into 
generalised costs through the application of an assumed value of travel for road 
users. The cost of travelling on a road is defined as the cost of time required to 
travel the route and the cost of tolls, hence: 
 

• Cost of time = Actual travel time ×  Value of time      
• Monetary cost = Toll per 1 km ×  Length of route 

      
The cost of travelling along the length of Route X and Y: 
 
Route X: xx

x
currx LTOLLVOTtc +=  (1) 

Route Y:  yy
y
curry LTOLLVOTtc +=  (2) 

 
Congestion is considered through a volume-delay function (VDF) that determines 
generalised cost. A VDF based on a simple deterministic queuing model (Newell, 
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1971) was utilised due to its comparatively simple form. The total generalised 
cost of travelling along routes x and y were thus defined as follows: 
 

Route X: xx
x

x

x LTOLL
x

VOTt
c +

−
=

ϕ1
0  (3) 

Route Y:  yy
y

y

y LTOLL
y

VOTt
c +

−
=

ϕ1
0  (4) 

 
4.3.2  Demand 
 
Transport demand in this study was modelled for two scenarios: 
 

• Scenario 1: Fixed Traffic Demand – A fixed number of trips to be distributed 
between the two road choices 

 
 =Q constant (5) 
 

• Scenario 2: Elastic Traffic Demand – A more complicated but realistic case 
is the assumption of elastic demand. Assuming that the highway system is 
governed by the principles of economic theory, transport supply can be 
considered as a standard economic good and, therefore, as network costs 
change so will traffic demand 

 
 CQ ⋅−= βα  (6) 
 
4.3.3  Network Equilibrium 
 
Scenario 1: Equilibrium with Fixed Demand 
 
Equilibrium conditions, defined by Wardrop (1952), require that for a given origin-
destination pair with two possible routes the cost of travelling along both routes is 
equal.  
 
For a fixed travel demand: 
 
 yxQ +=  (7) 
 
this corresponds to: 
 yx CC =  (8) 

 
Substituting (3), (4) and solving it simultaneously with (8): 
 

 yy
y

y

xx
x

x

LTOLL
xQ

VOTt
LTOLL

x

VOTt
+

−−
=+

− )(11
00

ϕϕ
 (9) 
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Equation (9) reduces to a quadratic equation of the form 02 =++ CBxAx  . 
Solving the quadratic equation, with respect to x, (traffic flow on untolled route) 
allows the calculation of y (traffic on tolled route) using equation (7). Although in 
most cases the quadratic equation has two solutions, non-negativity of traffic flow 
requires x > 0, which for most input values is unique. 
 
Scenario 2: Equilibrium with Elastic Demand 
 
When the demand Q is considered to be a function of the unique (equilibrium) 
origin-destination travel cost C as in equation (6), the Wardropian equilibrium 
solution between transport supply and demand is the simultaneous solution of 
equations (6), (7) and (8). 
 
Using appropriate choice of values of model inputs, the equilibrium solutions to 
the elastic demand problem can be found through an equivalent optimisation 
formulation (Evans, 1976). Suppose that Q-1 is an inverse demand function (the 
function that gives equilibrium travel cost as a function of demand). From (6) we 
compute: 
 

 β
α Q

C
−=  (10) 

and obtain: 

 β
α Q

QCCQQ
−==− )()]([1  (11) 

 
We define the objective function Z as a sum of definite cost integrals. In the case 
of the elastic demand model, Z is minimised subject to demand conservation 
constraints and with respect to x and y: 

 Min ∫∫∫ −+=
Qyx

dQQCdyycdxxcZ
000

)()()(  (12) 

Hence, in the case of the simple elastic demand model the objective function Z 
is: 
 

 dQ
Q

dyLToll
y

VOTt
dxLToll

x

VOTt
Z

Qy

yy
y

yx

xx
x

x

∫∫∫ 






 −−











+

−
+








+

−
=

00

0

0

0

11 β
α

ϕϕ
 (13) 

 
Solving the integrals and calculating their value for the upper non-zero limits 
gives: 

 

β

α

ϕ
ϕ

ϕ
ϕ

2

00 2

1
)1ln()1ln( QQ

yLToll
yVOTt

xLToll
xVOTt

Z yy
y

y
y

xx
x

x
x −

−+
−

−
++

−
−=  

(14) 
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Substituting equation (7) into the last components of equation (14) we obtain: 
 

 

)()2(
2

1

)1ln()1ln(

22

00

yxyxyxyLToll

yVOTt
xLToll

xVOTt
Z

yy

y

y
y

xx
x

x
x

+−+++

+
−

−⋅
++

−
−⋅

=

β
α

β

ϕ
ϕ

ϕ
ϕ

 (15) 

 
Function Z achieves minimum when both partial derivatives are equal to zero: 
 

 0
1

0 =−+−+
−

=
∂
∂

β
α

βϕ
yx

LToll
x

VOTt

x

Z
xx

x

x

 (16) 

 

 0
1

0 =−+−+
−

=
∂
∂

β
α

βϕ
yx

LToll
y

VOTt

y

Z
yy

y

y

 (17) 

 
and when second order derivatives with respect to x and y are non-negative, and 
the following condition is true: 
 

 0
22

2

2

2

2

>








∂∂
∂=

∂
∂⋅

∂
∂

yx

Z

y

Z

x

Z
 (18) 

 
With the second order derivatives of function Z as follows: 
 

 ( ) βϕ
ϕ 1

1 2
0

2

2

−
−

=
∂
∂

x

VOTt

x

Z

x

x
x  (19) 

 

 ( ) βϕ
ϕ 1

1 2

0

2

2

−
−

=
∂
∂

y

VOTt

y

Z

y

y
y  (20) 

 

 
β
12

−=
∂∂

∂
yx

Z
 (21) 

 
The conditions for the existence of minimum correspond to: 
 

 
( ) β
ϕ

ϕ
<

−
VOTt

x
x

x

x

0

21
 (22) 
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( ) β
ϕ

ϕ
<

−
VOTt

x
x

x

x

0

21
 (23) 

 

 ( ) ( ) 0
11

1

1

1

2

2

0

2
0 >







−













−

−











−

− ββϕ
ϕ

βϕ
φ

y

VOTt

x

VOTt

y

y
y

x

x
x  (24) 

 

The argmin of the Z function can be derived by setting 0=
∂
∂=

∂
∂

y

Z

x

Z
, from which y 

can be yielded as a function of x: 
 

 





















−+








−

−=

yyxx
x

x

y

y LTollLToll
x

VOTt

VOTt
y

ϕ
ϕ

1

1
1

 (25) 

 
Substituting equation (25) back into equation (17) we obtain an equation that 
allows the calculation of x: 
 

 

0

1

1

1
=−

+
−+

−

−

++
− β

α
β

ϕ
ϕ

ϕ

x

LTollLToll
x

VOTt

VOTt

LToll
x

VOTt y

yyxx
x

x

y

xx
x

x  

(26) 

 
To solve for x, a number of simplifying substitutions are made to equation (26) 
before solving the cubic equation. Given that the solution must be non-negative a 
unique x can be found under mild conditions, with corresponding y derived using 
equation (25). Full details of the derivation can be found in Cheung (2008) 
 
4.4  Deterministic Model Results 
 
The models were first programmed deterministically with realistic values of input 
variables ensuring existence of an initial feasible solution. These input values 
made reference to ARTESP (2007) and DERSA (2008) with model outturn 
results comparing well with observed data. Table 4.1 shows the adopted values 
of inputs and outputs for the fixed demand model. 
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Table 4.1: Fixed Demand Model Inputs and Outputs 
 Variable Untolled Route 

X: Inner Ring 
Road 

Tolled Route Y: 
Rodoanel 

Oeste 
VOT (Real$/hr) 20 

Total Demand (veh) 10000 
Free-flow Speed 

(km/hr) 
80 120 

Length (km) 25 32 
Number of lanes per 

direction 
3 2 

Capacity (veh/hr) 11400 7600 

Input variable 

Toll (Real$/km) 0 0.2 
Demand (veh/hr) 6822 3178 

Time (hr) 0.8 0.5 
Output 
variable 

Speed (km/hr) 32 70 
 Equilibrium cost (Real$) 15.6 15.6 

 
 
4.5  BBN Model: Example Application to Toll Roads 
 
The software program WinBUGS (Lunn et al., 2000) was used to perform the 
Bayesian Analysis using MCMC sampling methods. The program allowed BBN 
models to be graphically specified in the form of directed networks. The acyclic 
nature of the inference process dictated the type of simplified model that could be 
developed for the analysis.  
 
Having specified the deterministic traffic models in WinBUGS, values for model 
input variables were defined together with any assumed distribution. WinBUGS 
uses MCMC methods to calculate sample values on all the unknown values from 
their conditional (posterior) distribution given those stochastic nodes that have 
been specified. The MCMC method randomly samples from the prior distributions 
of all stochastic nodes for each simulation. 
 
Figures 4.2 and 4.3 show the WinBUGS fixed and elastic demand models 
respectively. 
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Figure 4.2: WinBUGS Model for Fixed Demand 
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Figure 4.3: WinBUGS Model for Elastic Demand 

 



 

© AET 2009 and contributors 15 
 

5 Model Tests 
 
The models were used to investigate the following:  
 

1.  VOT variable uncertainty propagation; 
2.  Demand parameter uncertainty propagation; 
3.  Monte Carlo Analysis Comparison.  

 
The results of the model tests summarise posterior distributions in terms of 
Bayesian probability percentiles, mean, standard deviation and the percentage 
error defined as follows: 

100
Mean

Deviation Standard
 Error  Percentage 







=  

 
5.1  VOT Variable Uncertainty Propagation 
 
VOT is one of the most important input variables in road transport modelling. To 
determine how the variation in this value affected the output traffic levels on both 
untolled and tolled routes, VOT was defined as a stochastic variable with a 
generalised gamma distribution. The scale of this distribution was set with 
reference to the existing literature (Armstrong et al., 2001; Gaudry et al., 1989). 
 
When VOT is stochastic, with all other variables deterministic, the overall shape 
of VOT distribution is propagated through to the posterior distributions of traffic 
on routes x and y. By changing the level of uncertainty in the VOT distribution as 
shown on Figure 5.1, the sensitivity of posterior traffic estimates to VOT 
uncertainty are shown on Figure 5.2. The results show an asymmetry in the 
propagation of uncertainty to the posterior traffic estimates. This is related to the 
asymmetry in the gamma distribution of VOT.  
 
This result for the fixed demand model is replicated in the result for the elastic 
demand model, hence providing a check on the algebraic equilibrium solutions. It 
can be expected that by varying β, the demand slope changes and hence so 
does the equilibrium solution of traffic distribution. 
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Figure 5.1: Variation in VOT Percentage Error 
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Figure 5.2: Variation of Outturn Traffic with Varia tion in VOT Percentage 

Error 
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5.2  Demand Parameter Uncertainty Propagation 
 
A test was undertaken using the elastic demand model to examine uncertainty in 
initial level of demand α and parameter β whilst keeping all other variables fixed. 
The α and β demand parameters utilised conservative uncertainty assumptions. 
After 10,000 MCMC simulations, the resulting distributions for tolled and untolled 
routes are shown in Figure 5.3, similar in shape but different in spread to the 
demand parameter distributions. 
 

x[1] sample: 9500

 6200.0  6400.0  6600.0  6800.0

    0.0

  0.002

  0.004

  0.006

y[1] sample: 9500

2.00E+3  2500.0 3.00E+3

    0.0

  0.001

  0.002

  0.003

 
Figure 5.3: Bayesian Posterior Distribution for Unt olled and Tolled Routes 

with Variation in α and β 
 
The percentage error around the tolled route is significantly greater than the 
untolled route – a product of the model specification. The inclusion of β, at the 
assumed mean value and with uncertainty, does not significantly impact the 
resultant equilibrium traffic flows or distributions. 
 
5.3  Monte Carlo Analysis Comparison 
 
A conventional risk analysis using Monte Carlo simulation software was applied 
to the deterministic traffic model. The result of this analysis was compared 
against the equivalent model result using the BBN with MCMC approach 
developed in WinBUGS. The elastic demand model was programmed analytically 
in Microsoft Excel and Monte Carlo sampling applied using the Excel add-in 
software @Risk (Palisade, 2002). The deterministic model was set-up to test a 
stochastic VOT parameter on equilibrium traffic. The VOT parameter was given a 
probability distribution near identical to that assumed in the equivalent WinBUGS 
model and Monte Carlo sampling was undertaken for 10,000 simulations. The 
results for the VOT uncertainty test are comparable between both WinBUGS and 
conventional Monte Carlo analysis. This is because both methods are applied to 
a deterministic case that forms an analytical relationship between inputs and 
outputs.  
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Figure 5.4: VOT Distribution Comparison between BBN  with MCMC and 

Conventional Monte Carlo Analysis 
 

 
Figure 5.5: Traffic Distribution Comparison between  BBN with MCMC and 

Conventional Monte Carlo Analysis 
 
Figure 5.4 compares the distribution of the BBN and conventional Monte Carlo 
analysis obtained for VOT variable. The distribution comparison graphs for 
outturn untolled and tolled route traffic, as shown in Figure 5.5, are similar in 
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overall shape to the VOT distribution but the distribution skew is noticeably more 
pronounced; this is related to the gamma distribution of VOT. The distribution 
plots corroborate the results and show how uncertainty propagation from VOT 
uncertainty to traffic uncertainty is related to the analytical model structure and 
level of input uncertainty. This test serves to demonstrate that both 
methodologies when applied to the same analytical problem formulation 
produced similar results. Whilst the sampling methodology is equivalent between 
methodologies, the differences lie in the characterisation of the problem, whether 
a BBN or more simply a relationship between inputs and outputs. Where the 
relationship between inputs and outputs cannot be analytically formulated, the 
conventional Monte Carlo approach would rely upon sensitivity testing. 
 
6 Conclusions 
 
In the test examples, the distribution of VOT input uncertainty was transferred to 
the outputs with traffic uncertainty at a lower order of magnitude. By varying the 
demand curve of the elastic model the more important parameter was found to 
be the α value – the initial demand level – rather than the β value – the slope of 
the demand curve. In the cumulative uncertainty test applied to the elastic 
demand case, where all significant input variables were defined stochastically, 
the resultant traffic uncertainty was more pronounced especially in the tolled road 
traffic. 
 
In comparing the BBN with MCMC approach with conventional Monte Carlo 
analysis, the results of both approaches are similar when applied to the same 
analytical traffic models. This result confirms the validity of the underlying traffic 
models and also demonstrates that both methods can be used to investigate 
uncertainty propagation in traffic models. 
 
The main advantage of the BBN with MCMC is its flexibility. The network is 
suitable to investigate and characterise the impact of stochastic variables and 
how they propagate through the model. The definition of the BBN also helps to 
formulate the model by forcing the specification of model variable dependencies. 
Another advantage of the Bayesian approach is the possibility of combining prior 
beliefs with empirical data to make inferences. The developed models did not 
utilise additional datasets, and therefore the full functionality of the Bayesian 
approach, but instead relied upon the prior distribution assumptions of the input 
variables. 
 
There are limitations to the BBN with MCMC approach as demonstrated in this 
paper: 
 

• The initial complexity of network development 
• The downsides of network flexibility 
• The current limitation to the analysis of simplified problems 
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The specification of the network can be complex both in terms of developing the 
conditional relationships and in computer programming.  This limits the practical 
application of the technique to larger problem formulations. 
 
The flexibility of the BBN to analyse variation and uncertainty propagation within 
the model scope is one of its advantages. However, this can also lead to model 
specification issues where the question formulation becomes critical in the 
targeted investigation of uncertainty. 
 
The use of BBNs with MCMC is demonstrated for a theoretical case study. An 
obvious recommendation is to apply the approach to a more realistic case study, 
to include forecast year growth factors, or within a four-stage modelling approach 
– although current technology may render this application commercially 
impractical.  
 
Future areas of research can develop or extend the existing networks and 
include investigating: 
 

• model uncertainties from use of different forms of VDFs in equilibrium 
models; 

• future year traffic growth variables on forecast traffic; 
• stochastic assignment traffic models; and 
• network model applications. 

 
BBN models offer an alternative approach to incorporating uncertainty in 
transport models. The primary objective of this paper was to demonstrate the 
approach when applied to a simple toll road case study, developed from traffic 
modelling principles. Although practical applications are currently limited, 
modelling uncertainty in the traffic model process provides essential information 
to decision-makers and this approach offers an exciting area of research. 
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