
© Association for European Transport and contributors 2009 1

A NEW IMPLEMENTATION OF ORIGIN-BASED ASSIGNMENT ALG ORITHM IN
SATURN

Yanling Xiang and Ian Wright, Atkins Limited
Dirck Van Vliet

Hillel Bar-Gera, Purdue University, and Ben-Gurion University of the Negev, Israel
David Boyce, Northwestern University

1. INTRODUCTION

The most common traffic assignment algorithm used in practice is the link-based
Frank-Wolfe algorithm (Frank and Wolfe, 1957), which has been the principal
assignment algorithm (with various modifications) used in the SATURN highway
assignment suite since its first release in 1981 (Van Vliet et al, 1980). Whilst the
Frank-Wolfe (FW) algorithm is theoretically proven to produce a converged
solution (when the problem has a convex optimisation formulation) it fails to
achieve accurate solutions within any practical computation timeframe.

The Origin-Based Assignment (OBA) algorithm (Bar-Gera, 2002) was developed
by Prof. Hillel Bar-Gera, while a PhD student at the University of Chicago in the
late 1990’s. The key difference of OBA from the link-based FW algorithm is that it
stores the link flows as generated by each individual origin. In a certain sense,
OBA is an intermediate between link-based and path-based algorithms but without
requiring excessive RAM or CPU as typically characterized by the latter. The
principle of OBA is that, by considering origin-based link flows from the a-cyclic
subnetwork, it provides a computationally efficient route-building process as well
as enabling the elimination of residual flows (i.e. small flows on sub-optimal routes)
that have a detrimental impact on algorithm convergence.

The algorithm revolutionised traffic assignment in that it provided a Wardrop
Equilibrium solution whose numerical accuracy was restricted only by the
numerical accuracy of the computer, i.e. it converged exactly within reasonable
CPU times. OBA first became available with the release of SATURN Version 10.5
in 2005 for single user class (SUC) assignments only - this restriction precluded its
practical application.

A secondary benefit of the OBA algorithm is that the secondary analysis that
requires route information (e.g. select-link analysis and cost skimming) may be
readily extracted from the route information stored during the assignment rather
than having to be subsequently re-built from the link information stored under FW.

This paper presents the subsequent developments of OBA within SATURN: (i) the
extension of the algorithm to handle multiple user class (MUC) assignments; and,
more recently, (ii) a hybrid algorithm combining the speed of Frank-Wolfe algorithm
with the accuracy of OBA. This development work continues and the latest results
presented show its potential. The recent release of multi-threaded implementation
of the existing FW algorithm (SATURN Multi-Core) provides further exciting
opportunities to combine the speed of FW with the subsequent accuracy of OBA
MUC.

© Association for European Transport and contributors 2009 2

This paper is organised as follows: Section 2 presents an overview of the OBA
algorithm (applicable to both SUC and MUC implementations) whilst Section 3
describes the extension of the existing OBA algorithm for the MUC problem as well
before providing a practical comparison of FW and OBA algorithms. Section 4
describes the hybrid algorithm with latest results whilst Section 5 provides a
summary of the findings.

2. AN OVERVIEW OF ORIGIN-BASED ASSIGNMENT

A-CYCLIC SUBNETWORKS

Unlike the link-based FW algorithm, the routes created by the OBA path-building
process connecting the origin to all other origins cannot pass through the same
node more than once – the resulting subnetwork is described as ‘a-cyclic’. The
work undertaken by Bar-Gera (2002) proved that there is always an equilibrium
solution by origin for a-cyclic subnetworks and the restriction to using only a-cyclic
subnetworks will not prevent the algorithm from converging to the true equilibrium
solution.

APPROACH PROPORTIONS AND ROUTE FLOWS

The main solution variable in the OBA algorithm is the calculation of the origin-
based approach proportions for every origin and every link in the subnetwork, such
that for every origin p and node i contained therein:

• the sum of origin-based approach proportions, for each origin p over all
subnetwork links ending at node i is equal to one; and

• the approach proportions for origin p of links that are not included in the
subnetwork are restricted to zero.

Using origin-based approach proportions, route proportions are determined by the
product of the individual approach proportions of all the subnetwork links along the
route. The resulting route flows are simply determined by the product of OD flow
and route proportion.

Advantages

The representation of the solution by origin-based approach proportions allows
storing a complete description of the route flows very efficiently. This is a major
difference from many alternative solution procedures, including the most common
FW algorithm, which store only total link flows during the iterative process. The
use of a-cyclic subnetworks allows a definition of a topological order of the nodes,
which is an origin-specific ordering of the nodes, such that every link in the
restricting subnetwork goes from a node of lower topological order to a node of
higher topological order.

© Association for European Transport and contributors 2009 3

Most computations in the proposed algorithm are done in a single pass over the
nodes, either in ascending or descending topological order. The time required by
such computations is a linear function of the number of links in the network. This
computational efficiency is a major advantage of the restriction to a-cyclic
solutions.

TRAFFIC ASSIGNMENT

Using the A-Cyclic Subnetwork

In solving the traffic assignment problem, the algorithm starts with trees of
minimum cost routes as restricting subnetworks, leading to an all-or-nothing
assignment. Then, the algorithm considers all origins in a sequential order. For
each origin the restricting subnetwork is updated, and the origin-based approach
proportions are adjusted within the given restricting subnetwork.

To update a restricting subnetwork, unused links are removed. Once a new
restricting subnetwork is found, several computationally intensive steps are needed
including a reorganization of the data structure. However, the structures of the
restricting subnetworks tend to stabilise fairly quickly. Therefore, it is useful to
update origin-based approach proportions while keeping the restricting
subnetworks fixed. This is done by introducing “inner iterations” as described in
the flow chart, presented below in Figure 1.

To update origin-based approach proportions within a given restricting subnetwork
a search direction based on shifting flow from high cost alternatives to low cost
alternatives is used. In addition to current costs, estimates of cost derivatives are
used to improve the search direction in a quasi-Newton fashion. When two
independent routes are considered, the amount of flow shifted by the search
direction equals the difference between route costs divided by the sum of route
cost derivatives – the same result as would be obtained by considering an
objective function second-order approximation.

Eliminating Residual Flows

The second-order search direction described above is viewed as desirable flow
shifts. These are scaled by a step size between zero and one, and then truncated
to guarantee feasibility, a process referred as the ‘boundary search procedure’.
This technique is somewhat different than conventional line search techniques,
where shifts are first truncated to guarantee feasibility and only then scaled by a
step size. The importance of the boundary search for OBA is that it is effective in
eliminating residual flows, i.e. small flows on sub-optimal routes. The elimination of
residual flows is critical for algorithm convergence. See (Bar-Gera, 2002) for
details.

© Association for European Transport and contributors 2009 4

Achieving Convergence using ‘Social Pressure’

In order to guarantee descent of the objective function, and convergence of the
algorithm, the search considers various step size values of 1/n. The stopping
condition is based on the concept of ‘social pressure’ introduced by Kupsizewska
and Van Vliet (1999). The principle of social pressure is that every traveller shifted
from route r1 to r2 places pressure (positive or negative), which is equal to their
gain (or loss) as a result from the shift, that is according to the difference in route
costs. The total social pressure is the sum of the pressure from all the travellers.

The search direction is beneficial in the sense that it always enjoys positive social
pressure for small step sizes but, as the step size increases, the social pressure
decreases, and eventually it may become negative. The objective is to determine
the largest step size with positive social pressure - this social pressure principle is
similar to the stopping condition of the line-search in the Frank-Wolfe algorithm.

3. EXTENDING OBA TO MULTI-USER CLASS PROBLEMS

OVERVIEW

The OBA algorithm was originally implemented for single user class problems but
the principle restriction to SUC related to the implementation rather than any
theoretical considerations. By its nature, OBA creates multiple copies of the same
network via its use of a-cyclic subnetworks and provides a flexible framework that
may be readily expanded.

Within OBA, the origin-based link flows are independent between origins and the
revisions to handle MUC problems naturally extends that principle such that the
origin-based link flows are independent by origin and user class. In theory, the
extension to MUC problems is simply achieved by considering the MUC network
as an enlarged SUC network, whereby the origins for each user class are arranged
sequentially in turn as if they were consecutive origins with the total number of
virtual origins equal to the number of user classes (UC) multiplied by the number of
zones.

PROGRAMMING

In practice, however, there was a substantial volume of re-coding of the existing
data structures and algorithm to handle specific user-class components such as
demand, generalised costs, banned turns, and penalties as well as ensuring
consistency with the existing functionality of the SATURN suite.

The MUC implementation of OBA in SATURN is a natural extension of SUC OBA
based on its multi-copy property. The theoretical framework of OBA is theoretically
scalable across any number of user classes in essence and all the properties of
SUC OBA hold equally for MUC.

© Association for European Transport and contributors 2009 5

The existing OBA was coded in the C language and linked to the existing SATURN
FORTRAN through object libraries. Whilst the majority of the changes were
(relatively) straightforward, the principle complication occurred in the calculation of
link costs for MUC networks. For the existing FW assignments implemented in
SATURN, SUC and MUC link costs are calculated differently – for MUC, link costs
are the summation of:

• UC independent congested flow-dependent link costs (delays); and

• UC dependent free-flow link costs and fixed penalties (including bans or
tolls).

The cost function in the C programming for MUC OBA was implemented in a
similar way as that in FORTRAN for MUC FW assignments. The handling of
banned links in C was actually a translation of equivalent FORTRAN code. For the
calculation of cost derivatives, no special treatment was needed as they are a
function of congested link flows which are UC independent.

The following summarises key techniques and methods that were adopted for the
development of the MUC OBA in SATURN with C programming:

• New data structures were created to store origin-based networks by UC and
origin (plus various new structures and arrays for MUC OBA-specific
components);

• FORTRAN COMMON blocks already in SATURN were shared wherever
possible to reduce computer memory requirements;

• The MUC OBA assignment initialisation was based on the same principle as
that of SUC OBA - an All-Or-Nothing (AON) shortest path calculation. The
only difference was that, in addition to the UC-independent free flow costs,
the UC-specific fixed costs formed the basis for MUC route initialisation; and

• MUC OBA assignments were undertaken by UC and by origin in a sequential
order - whenever user classes are switched from one to another during the
assignments, UC-specific fixed costs and link bans are updated accordingly
and global structures refreshed for the next UC assignment.

Figure 1 below presents the flow chart of the implementation of MUC OBA
algorithm in SATURN.

Figure 1 – Flow Chart showing the OBA MUC Algorithm

Initialization:
 for every UC k
 Get UC-specific fixed costs and link/turn bans for k
 for every origin p
 Let Ap be a tree of minimum cost routes under free flow conditions from p
 Let αpa equal 1 for all links in Ap and 0 otherwise. (All-or-nothing assignment)
 end for

© Association for European Transport and contributors 2009 6

 end for

Main loop:
 for n=1 to number of main iterations
 for every UC k
 Get fixed costs and link/turn bans for UC k
 for every origin p
 update restricting subnetwork Ap
 update origin-based approach proportions αpa
 end for
 end for
 for m=1 to number of inner iterations
 for every UC k
 Get fixed costs and link/turn bans for UC k
 for every origin p
 update origin-based approach proportions αpa
 end for
 end for
 end for
 end for

Update restricting subnetwork for UC k and origin p:
 remove unused links from Ap
 for every node i compute the maximum cost νi from p to i
 for every link a=[i,j]
 if νi <νj add link a to Ap
 find new topological order for new Ap
 update data structures

Update origin-based approach proportions for UC k and origin p:
 compute average costs and Hessian approximations
 for step size 1,1/2,1/4,1/8…
 compute flow shifts and scale by step size
 project and aggregate flow shifts
 if social pressure is positive then stop
 end for
 apply flow shifts
 update total link flows and link costs

PERFORMANCE OF THE OBA MUC ALGORITHM

The performance of the new OBA MUC algorithm against the existing FW-
implementation in SATURN is shown below for two real-life models:

• Model 1 was a relatively small SATURN assignment model with six user
classes, 216 zones, 3001 assignment nodes, and 4545 assignment links;
whilst

• Model 2 was a much larger SATURN model with nine user classes, 453
zones, 7063 assignment nodes, and 10285 assignment links.

© Association for European Transport and contributors 2009 7

The comparisons illustrate %GAP against total CPU time in hours. %GAP is a
normalised convergence indicator for Wardrop equilibrium - in SATURN it
measures the degree to which the routes assigned are minimum cost routes after
the simulation stage.

Figure 2 shows the convergence for the OBA MUC and FW algorithms for Model 1
whilst Figure 3 provides the same comparison for Model 2. For both models, whilst
the FW algorithm was more efficient in early stages, it did not reach the same low
level of convergence that OBA subsequently achieved within the equivalent CPU
time.

Figure 2 - SATURN Convergence (Model 1)

0.0 1.0 2.0 3.0 4.0 5.0 6.0

CPU Time (minutes)

%
G

A
P

FW
OBA

0.1

0.01

0.001

0.0001

0.00001

1.0

Figure 3 - SATURN Convergence (Model 2)

0 10 20 30 40 50 60 70

CPU Time (minutes)

%
G

A
P

FW
OBA

0.0001

0.1

0.01

0.001

1.0

© Association for European Transport and contributors 2009 8

SUMMARY

The analysis shows that the OBA MUC algorithm was able to achieve higher levels
of convergence than the FW algorithm within similar CPU expenditure. Whilst the
existing FW algorithm was much faster in the initial stages it eventually became
‘stuck’ and unable to reduce the convergence error within its assigned solution.

4. HYBRID FW-OBA ALGORITHM

More recently, a new hybrid algorithm - combining the speed of Frank-Wolfe with
the accuracy of SATURN-OBA – has been developed to enable very highly
converged highway assignment solutions to be achieved without a significant
increase in CPU overheads. The current development work is focussing on the
optimal strategy for balancing the CPU time required and the level of convergence
achieved.

SATURN ASSIGNMENT

The hybrid algorithm initially starts off with the FW algorithm before transferring to
the OBA MUC algorithm. The transfer point is determined by the level of
convergence between the assignment-simulation loops in SATURN.

Assignment-Simulation Loops

The SATURN assignment consists of two modules (Figure 4): (i) a pure
assignment module based on “separable” link cost-flow functions; and (ii) a
simulation stage which accounts for non-separable interactions between traffic
streams at junctions. The assignment provides link (and turn) flows to the
simulation which, in turn, produces an updated set of separable cost-flow functions
based on the junction interactions for use in the next assignment. These two
modules are run in an iterative loop until: (i) both modules have converged
internally; and (ii) the changes in the cost-flow functions and/or link flows are very
small.

Figure 4 - SATURN Assignment and Simulation Loop

© Association for European Transport and contributors 2009 9

Switching Between Algorithms

A key feature of the early assignment-simulation loops is the large changes in the
cost-flow functions between successive loops. These occur because of the large
imbalance in the assigned flows estimated in the current assignment and those
derived from the previous loop and used in the simulation. Consequently, at this
early stage, it is not necessary to estimate a highly converged assignment and it is
more efficient, in terms of CPU required, to use FW. However, once the
convergence between the assignment and simulation has begun to stabilise, it is
advantageous to have a highly convergent assignment available with OBA.

PERFORMANCE OF THE HYBRID ALGORITHM

The performance of the hybrid algorithm against both the FW and OBA MUC
implementation in SATURN is shown below for three more real-life models using
the same comparisons previously shown in Section 3 with (Log) %GAP plotted
against total CPU times. The Hybrid algorithm was also tested using the earlier
models and the performance of the algorithm is also presented. The three new
models were:

• Model 3 was a SATURN model with nine user classes, 321 zones, 5678
assignment nodes, and 8354 assignment links;

• Model 4 was a larger SATURN model with five user classes, 510 zones,
15875 assignment nodes, and 22113 assignment links; and

• Model 5 is a SATURN model with a single user class, 846 zones, 15599
assignment nodes, and 26849 assignment links.

Different convergence targets were used depending on the overall size of the
model. A convergence target of %GAP < 0.0001 for four consecutive loops was
set for Model 3 whilst more relaxed targets of %GAP < 0.001 and %GAP < 0.01
(for four consecutive loops) was selected for the larger Models 4 and 5
respectively.

Figure 5 compares the profiles for the three algorithms for Model 3 with the
assignment terminated when the convergence criteria was met. As previously
described in Section 3, the FW algorithm was quicker in the early stages despite
the oscillations in performance. The MUC OBA algorithm was much slower to
achieve similar levels of convergence but less prone to oscillation as well as
having a more linear descent profile. If the assignment was continued beyond the
pre-defined convergence target, the algorithm would have converged to a lower
%GAP value than would be achieved by FW.

The hybrid algorithm combined the strengths of the two algorithms: the initial rapid
improvements in convergence from FW followed by a steady decent profile of OBA
MUC. Within these tests, the switch to MUC OBA was undertaken at an early
stage (i.e. %GAP < 0.1) – empirical testing showed that switching to OBA MUC at
this level of convergence enabled lower %GAP values to be subsequently
achieved. Further optimisation work is underway in this area.

© Association for European Transport and contributors 2009 10

Figure 5 - SATURN Convergence (Model 3)

0 5 10 15 20 25 30 35

CPU Time (minutes)

%
G

A
P FW

OBA
Hybrid

Switch from FW to
OBA for Hybrid

Target %GAP <0.001 for
four consecutive loops

1.0

0.0001

0.001

0.01

0.1

0.00001

Figure 6 provides a similar comparison for the larger Model 4 with the assignment
also terminated when the convergence criteria (%GAP < 0.001) was achieved.
The MUC OBA and Hybrid algorithms performed less well with FW achieving the
convergence target much more quickly. The MUC OBA algorithm eventually
achieved a lower %GAP value but a considerable extra CPU overhead was
incurred. Conversely, the Hybrid algorithm incurred some oscillations in the
convergence caused by variations in flows and cost-delay functions in the
simulation between successive loops.

Figure 6 - SATURN Convergence (Model 4)

0 50 100 150 200 250

CPU Time (minutes)

%
G

A
P FW

OBA
Hybrid

Switch from FW to
OBA for Hybrid

Target %GAP <0.001 for
four consecutive loops

0.1

10.0

1.0

0.01

0.0001

0.001

© Association for European Transport and contributors 2009 11

Figure 7 provides the same comparison for the Model 5 with the assignment
terminated when the convergence criteria (%GAP < 0.01) was achieved. Whilst
the MUC OBA converges much more slowly, the Hybrid algorithm is comparable to
the FW algorithm in terms of CPU expenditure to reach the same convergence.

Figure 7 - SATURN Convergence (Model 5)

0 10 20 30 40 50 60 70

CPU Time (minutes)

%
G

A
P FW

OBA
Hybrid

Switch from FW to
OBA for Hybrid

Target %GAP <0.01 for
four consecutive loops

10.0

1.0

0.1

0.01

0.001

For completeness, Figure 8 shows the performance of the Hybrid model for Model
2 previously tested in Section 3. As with the other models, the Hybrid algorithm
shared the initial characteristics of the FW algorithm before providing an OBA
solution to a higher level of accuracy.

Figure 8 - SATURN Convergence (Model 2)

0 10 20 30 40 50 60 70

CPU Time (minutes)

%
G

A
P

FW
OBA
Hybrid

Switch from FW to
OBA for Hybrid

0.0001

0.1

0.01

0.001

1.0

© Association for European Transport and contributors 2009 12

SUMMARY

By combining the rapidity of the FW algorithm in the early stages and subsequently
switching over to OBA MUC algorithm, the Hybrid algorithm has shown
performance advantages and its potential in solving real-life traffic assignment
problems:

• It is (generally) faster than OBA MUC alone but also more accurate than FW
in assignment convergence; and

• By using (and storing) route proportions, any secondary analysis may be
undertaken without needing to re-build the paths used by FW.

5. CONCLUSIONS

The development of the SATURN-based OBA MUC algorithm has been
presented in this paper. The performance of OBA MUC has been compared
against the existing FW algorithm for four real-life applications and its theoretical
superiority in achieving higher levels of convergence has been demonstrated.

These higher levels of convergence now achievable in SATURN will provide
practical benefits to other models that are sensitive to convergence including
demand models (e.g. DIADEM) and cost-benefits models (e.g. TUBA) for example.

The hybrid FW-OBA MUC algorithm brings together the advantages of FW and
OBA MUC and has led to improvements in computer runtimes and/or assignment
accuracy. The switch to OBA guarantees greater accuracy in the final equilibrium
assignment such that the impact of assignment noise is significantly reduced
(compared to existing FW-based processes) and high levels of convergence.

On a more practical-side, the hybrid algorithm has offered reduced model
runtimes in some networks and further efficiencies in secondary analysis as
the route information is stored during the assignment. The hybrid algorithm has
also recently been combined with the multi-threaded implementation of FW
available in SATURN Multi-Core and this has demonstrated further reductions in
CPU required – however, this discussion is beyond the scope of this paper.

Development work continues on the hybrid method already available in the latest
SATURN Beta versions with work focussing on further optimisation of the switch-
over strategy and associated controls.

The current OBA MUC development work has also reinforced the importance of
good quality network coding. Convergence within SATURN is sensitive to the
interactions between the assignment and simulation loops. New OBA algorithms
are able to achieve very high levels of convergence but only if the network coding
enables robust and stable estimates of flow and travel costs to be calculated.

© Association for European Transport and contributors 2009 13

6. REFERENCES

Bar-Gera, H and Van Vliet, D (2003) The application of Origin-based assignment to
SATURN networks with asymmetric cost functions, European Transport
Conference 2003.

Bar-Gera, H. and Boyce, D. (2003) Origin-based algorithms for combined travel
forecasting models, Transportation Research 37B (4), pp. 405-422.

Bar-Gera, H. (2002) Origin-Based Algorithm for the Traffic Assignment Problem,
Transportation Science 36 (4), pp 398-417.

Bar-Gera, H. (1999) Origin-Based Algorithm for Transportation Network Modeling,
National Institute of Statistical Sciences (NISS), Technical Report Number 103.

Kupsizewska, D and Van Vliet, D. (1999) UK 101 uses for path-based assignment,
European Transport Conference 1999.

Van Vliet, D. Hall, M.D. and Willumsen, L.G. (1980) SATURN - A Simulation-
Assignment Model for the Evaluation of Traffic Management Schemes, Traffic
Engineering & Control, 21, 168-176, April 1980.

Frank, M and Wolfe, P (1956), An algorithm for quadratic programming, Naval
Research Logistics Quarterly, No. 3 1956, pp. 95-110.

