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1. INTRODUCTION 

The most common traffic assignment algorithm used in practice is the link-based 
Frank-Wolfe algorithm (Frank and Wolfe, 1957), which has been the principal 
assignment algorithm (with various modifications) used in the SATURN highway 
assignment suite since its first release in 1981 (Van Vliet et al, 1980).  Whilst the 
Frank-Wolfe (FW) algorithm is theoretically proven to produce a converged 
solution (when the problem has a convex optimisation formulation) it fails to 
achieve accurate solutions within any practical computation timeframe.  

The Origin-Based Assignment (OBA) algorithm (Bar-Gera, 2002) was developed 
by Prof. Hillel Bar-Gera, while a PhD student at the University of Chicago in the 
late 1990’s.  The key difference of OBA from the link-based FW algorithm is that it 
stores the link flows as generated by each individual origin.  In a certain sense, 
OBA is an intermediate between link-based and path-based algorithms but without 
requiring excessive RAM or CPU as typically characterized by the latter.  The 
principle of OBA is that, by considering origin-based link flows from the a-cyclic 
subnetwork, it provides a computationally efficient route-building process as well 
as enabling the elimination of residual flows (i.e. small flows on sub-optimal routes) 
that have a detrimental impact on algorithm convergence.   

The algorithm revolutionised traffic assignment in that it provided a Wardrop 
Equilibrium solution whose numerical accuracy was restricted only by the 
numerical accuracy of the computer, i.e. it converged exactly within reasonable 
CPU times.  OBA first became available with the release of SATURN Version 10.5 
in 2005 for single user class (SUC) assignments only - this restriction precluded its 
practical application. 

A secondary benefit of the OBA algorithm is that the secondary analysis that 
requires route information (e.g. select-link analysis and cost skimming) may be 
readily extracted from the route information stored during the assignment rather 
than having to be subsequently re-built from the link information stored under FW. 

This paper presents the subsequent developments of OBA within SATURN: (i) the 
extension of the algorithm to handle multiple user class (MUC) assignments; and, 
more recently, (ii) a hybrid algorithm combining the speed of Frank-Wolfe algorithm 
with the accuracy of OBA. This development work continues and the latest results 
presented show its potential.  The recent release of multi-threaded implementation 
of the existing FW algorithm (SATURN Multi-Core) provides further exciting 
opportunities to combine the speed of FW with the subsequent accuracy of OBA 
MUC. 
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This paper is organised as follows: Section 2 presents an overview of the OBA 
algorithm (applicable to both SUC and MUC implementations) whilst Section 3 
describes the extension of the existing OBA algorithm for the MUC problem as well 
before providing a practical comparison of FW and OBA algorithms.  Section 4 
describes the hybrid algorithm with latest results whilst Section 5 provides a 
summary of the findings. 

2. AN OVERVIEW OF ORIGIN-BASED ASSIGNMENT 

A-CYCLIC SUBNETWORKS  

Unlike the link-based FW algorithm, the routes created by the OBA path-building 
process connecting the origin to all other origins cannot pass through the same 
node more than once – the resulting subnetwork is described as ‘a-cyclic’.  The 
work undertaken by Bar-Gera (2002) proved that there is always  an equilibrium 
solution by origin for a-cyclic subnetworks and the restriction to using only a-cyclic 
subnetworks will not prevent the algorithm from converging to the true equilibrium 
solution. 

APPROACH PROPORTIONS AND ROUTE FLOWS 

The main solution variable in the OBA algorithm is the calculation of the origin-
based approach proportions for every origin and every link in the subnetwork, such 
that for every origin p and node i contained therein: 

• the sum of origin-based approach proportions, for each origin p over all 
subnetwork links ending at node i is equal to one; and 

• the approach proportions for origin p of links that are not included in the 
subnetwork are restricted to zero. 

Using origin-based approach proportions, route proportions are determined by the 
product of the individual approach proportions of all the subnetwork links along the 
route.  The resulting route flows are simply determined by the product of OD flow 
and route proportion. 

Advantages 

The representation of the solution by origin-based approach proportions allows 
storing a complete description of the route flows very efficiently.  This is a major 
difference from many alternative solution procedures, including the most common 
FW algorithm, which store only total link flows during the iterative process.  The 
use of a-cyclic subnetworks allows a definition of a topological order of the nodes, 
which is an origin-specific ordering of the nodes, such that every link in the 
restricting subnetwork goes from a node of lower topological order to a node of 
higher topological order.   
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Most computations in the proposed algorithm are done in a single pass over the 
nodes, either in ascending or descending topological order.  The time required by 
such computations is a linear function of the number of links in the network.  This 
computational efficiency is a major advantage of the restriction to a-cyclic 
solutions. 

TRAFFIC ASSIGNMENT  

Using the A-Cyclic Subnetwork 

In solving the traffic assignment problem, the algorithm starts with trees of 
minimum cost routes as restricting subnetworks, leading to an all-or-nothing 
assignment.  Then, the algorithm considers all origins in a sequential order.  For 
each origin the restricting subnetwork is updated, and the origin-based approach 
proportions are adjusted within the given restricting subnetwork.  

To update a restricting subnetwork, unused links are removed.  Once a new 
restricting subnetwork is found, several computationally intensive steps are needed 
including a reorganization of the data structure.  However, the structures of the 
restricting subnetworks tend to stabilise fairly quickly.  Therefore, it is useful to 
update origin-based approach proportions while keeping the restricting 
subnetworks fixed.  This is done by introducing “inner iterations” as described in 
the flow chart, presented below in Figure 1. 

To update origin-based approach proportions within a given restricting subnetwork 
a search direction based on shifting flow from high cost alternatives to low cost 
alternatives is used.  In addition to current costs, estimates of cost derivatives are 
used to improve the search direction in a quasi-Newton fashion.  When two 
independent routes are considered, the amount of flow shifted by the search 
direction equals the difference between route costs divided by the sum of route 
cost derivatives – the same result as would be obtained by considering an 
objective function second-order approximation. 

Eliminating Residual Flows 

The second-order search direction described above is viewed as desirable flow 
shifts.  These are scaled by a step size between zero and one, and then truncated 
to guarantee feasibility, a process referred as the ‘boundary search procedure’. 
This technique is somewhat different than conventional line search techniques, 
where shifts are first truncated to guarantee feasibility and only then scaled by a 
step size.  The importance of the boundary search for OBA is that it is effective in 
eliminating residual flows, i.e. small flows on sub-optimal routes. The elimination of 
residual flows is critical for algorithm convergence. See (Bar-Gera, 2002) for 
details. 
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Achieving Convergence using ‘Social Pressure’ 

In order to guarantee descent of the objective function, and convergence of the 
algorithm, the search considers various step size values of 1/n.  The stopping 
condition is based on the concept of ‘social pressure’ introduced by Kupsizewska 
and Van Vliet (1999).  The principle of social pressure is that every traveller shifted 
from route r1 to r2 places pressure (positive or negative), which is equal to their 
gain (or loss) as a result from the shift, that is according to the difference in route 
costs.  The total social pressure is the sum of the pressure from all the travellers. 

The search direction is beneficial in the sense that it always enjoys positive social 
pressure for small step sizes but, as the step size increases, the social pressure 
decreases, and eventually it may become negative.  The objective is to determine 
the largest step size with positive social pressure - this social pressure principle is 
similar to the stopping condition of the line-search in the Frank-Wolfe algorithm. 

3. EXTENDING OBA TO MULTI-USER CLASS PROBLEMS 

OVERVIEW 

The OBA algorithm was originally implemented for single user class problems but 
the principle restriction to SUC related to the implementation rather than any 
theoretical considerations.  By its nature, OBA creates multiple copies of the same 
network via its use of a-cyclic subnetworks and provides a flexible framework that 
may be readily expanded. 

Within OBA, the origin-based link flows are independent between origins and the 
revisions to handle MUC problems naturally extends that principle such that the 
origin-based link flows are independent by origin and  user class.  In theory, the 
extension to MUC problems is simply achieved by considering the MUC network 
as an enlarged SUC network, whereby the origins for each user class are arranged 
sequentially in turn as if they were consecutive origins with the total number of 
virtual origins equal to the number of user classes (UC) multiplied by the number of 
zones. 

PROGRAMMING 

In practice, however, there was a substantial volume of re-coding of the existing 
data structures and algorithm to handle specific user-class components such as 
demand, generalised costs, banned turns, and penalties as well as ensuring 
consistency with the existing functionality of the SATURN suite. 

The MUC implementation of OBA in SATURN is a natural extension of SUC OBA 
based on its multi-copy property.  The theoretical framework of OBA is theoretically 
scalable across any number of user classes in essence and all the properties of 
SUC OBA hold equally for MUC. 
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The existing OBA was coded in the C language and linked to the existing SATURN 
FORTRAN through object libraries.  Whilst the majority of the changes were 
(relatively) straightforward, the principle complication occurred in the calculation of 
link costs for MUC networks.  For the existing FW assignments implemented in 
SATURN, SUC and MUC link costs are calculated differently – for MUC, link costs 
are the summation of: 

• UC independent congested flow-dependent link costs (delays); and 

• UC dependent free-flow link costs and fixed penalties (including bans or 
tolls). 

The cost function in the C programming for MUC OBA was implemented in a 
similar way as that in FORTRAN for MUC FW assignments. The handling of 
banned links in C was actually a translation of equivalent FORTRAN code. For the 
calculation of cost derivatives, no special treatment was needed as they are a 
function of congested link flows which are UC independent. 

The following summarises key techniques and methods that were adopted for the 
development of the MUC OBA in SATURN with C programming: 

• New data structures were created to store origin-based networks by UC and 
origin (plus various new structures and arrays for MUC OBA-specific 
components); 

• FORTRAN COMMON blocks already in SATURN were shared wherever 
possible to reduce computer memory requirements; 

• The MUC OBA assignment initialisation was based on the same principle as 
that of SUC OBA - an All-Or-Nothing (AON) shortest path calculation. The 
only difference was that, in addition to the UC-independent free flow costs, 
the UC-specific fixed costs formed the basis for MUC route initialisation; and 

• MUC OBA assignments were undertaken by UC and by origin in a sequential 
order - whenever user classes are switched from one to another during the 
assignments, UC-specific fixed costs and link bans are updated accordingly 
and global structures refreshed for the next UC assignment. 

Figure 1 below presents the flow chart of the implementation of MUC OBA 
algorithm in SATURN. 

Figure 1 – Flow Chart showing the OBA MUC Algorithm   

Initialization: 
 for every UC k 
         Get UC-specific fixed costs and link/turn bans for k 
       for every origin p 
            Let Ap be a tree of minimum cost routes under free flow conditions from p 
            Let αpa equal 1 for all links in Ap and 0 otherwise. (All-or-nothing assignment) 
       end for 
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 end for 

Main loop: 
     for n=1 to number of main iterations  
  for every UC k 
   Get fixed costs and link/turn bans for UC k 
            for every origin p 
                 update restricting subnetwork Ap 
                 update origin-based approach proportions αpa  
   end for 
           end for  
          for m=1 to number of inner iterations  
   for every UC k 
    Get fixed costs and link/turn bans for UC k 
                 for every origin p 
                      update origin-based approach proportions αpa  
    end for 
               end for  
          end for  
     end for 

Update restricting subnetwork for UC k and origin p: 
     remove unused links from Ap  
     for every node i compute the maximum cost νi from p to i  
     for every link a=[i,j]   
          if νi <νj add link a to Ap   
     find new topological order for new Ap   
     update data structures 

Update origin-based approach proportions for UC k and origin p: 
     compute average costs and Hessian approximations 
          for step size 1,1/2,1/4,1/8… 
               compute flow shifts and scale by step size 
               project and aggregate flow shifts 
               if social pressure is positive then stop  
          end for  
     apply flow shifts  
     update total link flows and link costs 

PERFORMANCE OF THE OBA  MUC ALGORITHM 

The performance of the new OBA MUC algorithm against the existing FW-
implementation in SATURN is shown below for two real-life models:  

• Model 1 was a relatively small SATURN assignment model with six  user 
classes, 216 zones, 3001 assignment nodes, and 4545 assignment links; 
whilst 

• Model 2 was a much larger SATURN model with nine  user classes, 453 
zones, 7063 assignment nodes, and 10285 assignment links. 
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The comparisons illustrate %GAP against total CPU time in hours. %GAP is a 
normalised convergence indicator for Wardrop equilibrium - in SATURN it 
measures the degree to which the routes assigned are minimum cost routes after 
the simulation stage. 

Figure 2 shows the convergence for the OBA MUC and FW algorithms for Model 1 
whilst Figure 3 provides the same comparison for Model 2.  For both models, whilst 
the FW algorithm was more efficient in early stages, it did not reach the same low 
level of convergence that OBA subsequently achieved within the equivalent CPU 
time. 

Figure 2 - SATURN Convergence (Model 1)  
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Figure 3 - SATURN Convergence (Model 2) 
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SUMMARY 

The analysis shows that the OBA MUC algorithm was able to achieve higher levels 
of convergence than the FW algorithm within similar CPU expenditure.  Whilst the 
existing FW algorithm was much faster in the initial stages it eventually became 
‘stuck’ and unable to reduce the convergence error within its assigned solution. 

4. HYBRID FW-OBA ALGORITHM 

More recently, a new hybrid algorithm - combining the speed of Frank-Wolfe with 
the accuracy of SATURN-OBA – has been developed to enable very highly 
converged highway assignment solutions to be achieved without a significant 
increase in CPU overheads.  The current development work is focussing on the 
optimal strategy for balancing the CPU time required and the level of convergence 
achieved. 

SATURN ASSIGNMENT 

The hybrid algorithm initially starts off with the FW algorithm before transferring to 
the OBA MUC algorithm.  The transfer point is determined by the level of 
convergence between the assignment-simulation loops in SATURN.   

Assignment-Simulation Loops 

The SATURN assignment consists of two modules (Figure 4): (i) a pure 
assignment module based on “separable” link cost-flow functions; and (ii) a 
simulation stage which accounts for non-separable interactions between traffic 
streams at junctions.  The assignment provides link (and turn) flows to the 
simulation which, in turn, produces an updated set of separable cost-flow functions 
based on the junction interactions for use in the next assignment.  These two 
modules are run in an iterative loop until: (i) both modules have converged 
internally; and (ii) the changes in the cost-flow functions and/or link flows are very 
small. 

Figure 4 - SATURN Assignment and Simulation Loop 
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Switching Between Algorithms 

A key feature of the early assignment-simulation loops is the large changes in the 
cost-flow functions between successive loops.  These occur because of the large 
imbalance in the assigned flows estimated in the current assignment and those 
derived from the previous loop and used in the simulation.  Consequently, at this 
early stage, it is not necessary to estimate a highly converged assignment and it is 
more efficient, in terms of CPU required, to use FW.  However, once the 
convergence between the assignment and simulation has begun to stabilise, it is 
advantageous to have a highly convergent assignment available with OBA. 

PERFORMANCE OF THE HYBRID ALGORITHM 

The performance of the hybrid algorithm against both the FW and OBA MUC 
implementation in SATURN is shown below for three more real-life models using 
the same comparisons previously shown in Section 3 with (Log) %GAP plotted 
against total CPU times.  The Hybrid algorithm was also tested using the earlier 
models and the performance of the algorithm is also presented.  The three new 
models were: 

• Model 3 was a SATURN model with nine  user classes, 321 zones, 5678 
assignment nodes, and 8354 assignment links;  

• Model 4 was a larger SATURN model with five  user classes, 510 zones, 
15875 assignment nodes, and 22113 assignment links; and  

• Model 5 is a SATURN model with a single  user class, 846 zones, 15599 
assignment nodes, and 26849 assignment links. 

Different convergence targets were used depending on the overall size of the 
model.  A convergence target of %GAP < 0.0001 for four consecutive loops was 
set for Model 3 whilst more relaxed targets of %GAP < 0.001 and %GAP < 0.01 
(for four consecutive loops) was selected for the larger Models 4 and 5 
respectively. 

Figure 5 compares the profiles for the three algorithms for Model 3 with the 
assignment terminated when the convergence criteria was met.  As previously 
described in Section 3, the FW algorithm was quicker in the early stages despite 
the oscillations in performance.  The MUC OBA algorithm was much slower to 
achieve similar levels of convergence but less prone to oscillation as well as 
having a more linear descent profile.  If the assignment was continued beyond the 
pre-defined convergence target, the algorithm would have converged to a lower 
%GAP value than would be achieved by FW.   

The hybrid algorithm combined the strengths of the two algorithms: the initial rapid 
improvements in convergence from FW followed by a steady decent profile of OBA 
MUC.  Within these tests, the switch to MUC OBA was undertaken at an early 
stage (i.e. %GAP < 0.1) – empirical testing showed that switching to OBA MUC at 
this level of convergence enabled lower %GAP values to be subsequently 
achieved.  Further optimisation work is underway in this area. 
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Figure 5 - SATURN Convergence (Model 3) 
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Figure 6 provides a similar comparison for the larger Model 4 with the assignment 
also terminated when the convergence criteria (%GAP < 0.001) was achieved.   
The MUC OBA and Hybrid algorithms performed less well with FW achieving the 
convergence target much more quickly.  The MUC OBA algorithm eventually 
achieved a lower %GAP value but a considerable extra CPU overhead was 
incurred.  Conversely, the Hybrid algorithm incurred some oscillations in the 
convergence caused by variations in flows and cost-delay functions in the 
simulation between successive loops. 

Figure 6 - SATURN Convergence (Model 4) 
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Figure 7 provides the same comparison for the Model 5 with the assignment 
terminated when the convergence criteria (%GAP < 0.01) was achieved.  Whilst 
the MUC OBA converges much more slowly, the Hybrid algorithm is comparable to 
the FW algorithm in terms of CPU expenditure to reach the same convergence. 

Figure 7 - SATURN Convergence (Model 5) 
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For completeness, Figure 8 shows the performance of the Hybrid model for Model 
2 previously tested in Section 3.  As with the other models, the Hybrid algorithm 
shared the initial characteristics of the FW algorithm before providing an OBA 
solution to a higher level of accuracy. 

Figure 8 - SATURN Convergence (Model 2) 
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SUMMARY 

By combining the rapidity of the FW algorithm in the early stages and subsequently 
switching over to OBA MUC algorithm, the Hybrid algorithm has shown 
performance advantages and its potential in solving real-life traffic assignment 
problems: 

• It is (generally) faster than OBA MUC alone but also more accurate than FW 
in assignment convergence; and 

• By using (and storing) route proportions, any secondary analysis may be 
undertaken without needing to re-build the paths used by FW. 

5. CONCLUSIONS 

The development of the SATURN-based OBA MUC algorithm  has been 
presented in this paper.  The performance of OBA MUC has been compared 
against the existing FW algorithm for four real-life applications and its theoretical 
superiority in achieving higher levels of convergence has been demonstrated. 

These higher levels of convergence  now achievable in SATURN will provide 
practical benefits to other models that are sensitive to convergence including 
demand models (e.g. DIADEM) and cost-benefits models (e.g. TUBA) for example. 

The hybrid FW-OBA MUC algorithm  brings together the advantages of FW and 
OBA MUC and has led to improvements in computer runtimes and/or assignment 
accuracy.  The switch to OBA guarantees greater accuracy in the final equilibrium 
assignment such that the impact of assignment noise is significantly reduced 
(compared to existing FW-based processes) and high levels of convergence. 

On a more practical-side, the hybrid algorithm has offered reduced model 
runtimes in some networks and further efficiencies in secondary analysis  as 
the route information is stored during the assignment.  The hybrid algorithm has 
also recently been combined with the multi-threaded implementation of FW 
available in SATURN Multi-Core and this has demonstrated further reductions in 
CPU required – however, this discussion is beyond the scope of this paper. 

Development work continues  on the hybrid method already available in the latest 
SATURN Beta versions with work focussing on further optimisation of the switch-
over strategy and associated controls.   

The current OBA MUC development work has also reinforced the importance of 
good quality network coding.  Convergence within SATURN is sensitive to the 
interactions between the assignment and simulation loops.  New OBA algorithms 
are able to achieve very high levels of convergence but  only if the network coding 
enables robust and stable estimates of flow and travel costs to be calculated. 
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