
ALLOWING FOR VARIABLE DEMAND IN HIGHWAY SCHEME 
ASSESSMENT 

J J Bates 
John Bates Services 

D Coombe 
MVA Ltd 
S Porter 

Department of the Environment, Transport and the Regions 
D van Vliet 

Institute for Transport Studies, Leeds University 

1. INTRODUCTION 

In their seminal report (SACTRA, 1994) the UK Standing Advisory Committee on 
Trunk Road Assessment concluded that "induced traffic" was likely to occur as a 
result of road improvements, and recommended that: 
"...variable trip matrix economic evaluations are undertaken f i r  schemes as the 
cornerstone of the appraisal in every case, except where it can be shown that the trip 
matrix will not vary as a result of the scheme being appraised" (para 13.49). 

While the main thrust of the Committee's recommendations was that, wherever 
feasible and cost-effective, the components of suppressed and induced traffic should 
be modelled individually, using some form of multi-modal transport model, it 
recognised that there are circumstances when simpler techniques would be 
appropriate (in small and medium-sized urban areas, for example), and that in the 
short term, simple elasticity models might be used (paragraphs 14.1 1 and 14.14). 

In response to SACTRA's Report, the (then) Department of Transport has issued two 
versions of a Guidance Note: the second version (February 1997) is part of the Design 
Manual for Roads and Bridges (DMRB, Volume 12.2.2), and contains advice on the 
form and application of elasticity models. 

Towards the end of 1997, the Department of the Environment, Transport and the 
Regions (DETR) commissioned a study on Improved Elasticities and Methods, in 
order to be sure whether, and if so how, elasticity values and methods should be further 
refined. It quickly became clear that it was desirable to move the emphasis of the 
research away from elasticity models and to tackle more general problems currently 
inhibiting other forms of Variable Demand modelling. 

The study aims to set out the theoretical basis for the future development of Variable 
Demand methods. Since this has implications for the way that data is collected and 
how inputs are prepared, some aspects may have to be regarded as long term 
aspirations, rather than matters which can and should be changed immediately. 

The main part of this Paper is concerned with an exploration of assignment-based 
variable demand modelling. In addition, it sets out an approach to forecasting the 
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reference case and hence establishing a realistic do-minimum case. Given the 
restrictions of length, detailed mathematical proofs are not presented here. The later 
sections describe the testing process with which the project is currently occupied. 

2. ASSIGNMENT-BASED VARIABLE DEMAND MODELLING 

The focus on ‘variable demand modelling’ requires an understanding of the basic 
principles of transport economics - in particular, the terms ‘supply’ and ‘demand’ and 
the related concept of an equilibrium system - at the outset. 

In classical economics both supply and demand are treated as functions of cost, but 
the normal graph is ‘inverted’ by plotting cost on the vertical axis, as in Figure 1. The 
notion that travel demand T is a function of cost C presents no fundamental 
difficulties: the term ‘demand model’ implies a procedure for predicting what travel 
decisions people would wish to make, given the generalised cost of all alternatives. 
These decisions include choice of time of travel, route, mode, destination, 
frequency/trip suppression. 

However, if these predicted travel decisions were actually realised, the generalised 
cost might not stay constant. This is where the ‘supply’ model comes in, to reflect 
how the transport system responds to a given level of demand: in particular, what 
would the generalised cost be if the estimated demand were ‘loaded’ on to the system. 
The best known ‘supply’ model is the conventional traffic assignment reflecting inter 
alia the deterioration in highway speeds as traffic volumes rise, but there are other 
important effects, such as the effects of congestion on bus operation, overcrowding on 
rail modes, and increased parking problems as demand approaches capacity. 

Since both demand and supply curves relate volume of travel with generalised cost, 
the actual volume of travel must be where the two curves cross, as in Figure 1 - this is 
known as the ‘equilibrium’ point. An ‘equilibrium model’ ensures that the demand 
for travel is consistent with the network performance and other supply effects in 
servicing that demand. If the final estimate of demand is loaded on to the supply, the 
resulting costs should exactly generate the estimate of demand which is loaded. 

Although the term demand is often used as if it related to a quantity which is known in 
its own right, it must be emphasised that the notion of travel demand always requires 
an implicit or explicit assumption about costs. The actual forecast resulting from a 
strategy or plan (sometimes misleadingly called expected demand) is the outcome of 
the equilibrium process referred to above. 

Of course the level of demand and hence the forecasts will reflect the demographic 
composition of the population, together with other external changes (eg effects due to 
land-use, income, car ownership etc.). However, in most cases, when assessing the 
impact of a policy, which means essentially changing the supply curve, the demand 
curve is held constant. Hence, the appraisal of proposed changes to the transport 
system can usually be viewed as a comparison of two (or more) equilibrium points, 
using a common demand curve, but with each equilibrium point associated with a 
different supply curve, as shown in Figure 2. 
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When we consider the problem in a general transport context, we are not interested in 
single elements of demand, but rather a matrix of elements. Correspondingly, there is 
no single cost associated with the supply side, but an array of individual elements. 

Additionally, the transport problem is complicated by the supply domain being that of 
a network of links, while the demand for travel relates to the inherent value of being 
at j, given a current location at i, and not to the particular paths used to reach j .  Thus 
the domain of the demand model is essentially the i-j pair. The result is that an 
interface procedure is required. We return to this below. 

We can generalise the simple one-dimensional example presented above, replacing 
the quantities T and C by multi-dimensional matrices, subject to some qualifications 
which we will ignore in this paper. Hence, the conditions for equilibrium are that: 
given Td = fD(c), C, = fs(T), we require 

T" = fD(C*) : C" = fs(T*) (1) 

The importance of the need to find the points of equilibrium with some accuracy 
cannot be ignored. The demandsupply diagrams shown in Figures 1 and 2 have been 
drawn with false origins for the sake of clarity. In reality, however, the benefits 
associated with a change in the supply curve are a very small quantity derived as the 
difference between two large quantities which have a certain degree of error 
associated with them. In order to derive the benefits accurately, it is essential that the 
equilibrium points are found accurately for both the do-minimum and do-something 
cases. Failure to do so (or, more fundamentally, to adopt modelling procedures which 
enable equilibrium to be found with accuracy) could easily result in erroneous 
decisions being taken. This point has been largely overlooked in the past. 

Except for the very simplest models, there are no direct ways of calculating the 
equilibrium solution, and it is necessary to set up iterative procedures. Although a 
well-conceived iterative system should converge to a unique solution, most methods 
will produce only approximate equilibria, both because of inherent computational 
inaccuracy (eg rounding) and the desire to limit computing time. 

Many complicated systems of equations can be solved by formulating an optimisation 
problem which by design is guaranteed to have the same solution. This is an 
extremely useful result, because considerable effort has been put into constrained 
optimisation techniques which have quite general application. Over 40 years ago an 
appropriate 'objective function' (to be minimised) was demonstrated by Beckmann et 
a1 (1956) to yield a solution consistent with Wardrop equilibrium, though it was many 
years before this was routinely implemented. 

We may note that the equilibrium point (T*,C*) in Figure 1 can be obtained by 
maximising the area between the demand and the supply curves. Expressing it for 
convenience as a minimisation problem in T by taking the negative, we have 

T 

0 
min z o  = I[fs ( W )  - fO1 (Wl f,fV (2) 

where fD-'(T) is the inverse demand curve, representing the price C at which the 
demand would reach level T. 
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Subject to certain mathematical conditions being satisfied, this one-dimensional 
approach can be extended to the case where the elements T, f and W are matrices. 
Our attention therefore focuses on how the demand and supply integrals can be 
evaluated. While the emphasis of the project is more involved with the demand side, 
there are some complications relating to the supply function which need to be 
discussed. 

3. 

As drawn, and implied in the matrix-based extension of the equilibrium condition, the 
supply function delivers the matrix of 0-D costs associated with a demand matrix T. 
However, as noted, the supply mechanism operates on a link rather than 0-D basis. 
For each element of demand there will be a set of chosen routes between i and j. In the 
simple “all or nothing” case, we can define an “origin-destination-lii incidence matrix“ 

THE SUPPLY CURVE FOR HIGHWAY TRAVEL 

Eija = 1 if the journey from i to j uses link a, 0 otherwise. 

When dealing with congested assignment, where normally we have multiple routes for a 
single 0-D pair, we can treat E as giving the proportion of i-j movements using link a. 

We now sketch out the nature of the interface between Demand and Supply. The process 
conventionally referred to as “Assignment” subsumes a number of “modules”: 

. definition of the set of paths for each origin-destination movement 
estimating the choice between those paths, thereby yielding E. 
calculating loads on l i d s  (defined by the matrix product V=T.E). 
capacity restraint - adjusting l i i  speed in response to changes in loads. 
This is the true supply process, giving link costs ca = fcv) 
skim - extract 0-D costs (defined by the matrix product C = E. c). 

. . 

. 
According to this description, the interface between 0-D and link is achieved by the 
matrix E. The “supply curve” is, in effect, the outcome of a series of assignments of 
different matrices T, each yielding a corresponding cost matrix C. Except in the simplest 
cases, there will be no “closed form” expression for the supply function (ie, it cannot be 
written in a way which can be directly evaluated).. 

In spite of this, we can evaluate the supply integral by proceeding along the following 
l ies .  To avoid def~tional problems, we confine ourselves to the “standard“ case where 
link costs are independent (ie, where the costs on a link are unaffected by the flows on 
other links). By changing the variable of integration from T to V, where. V=T.E, the 

supply integral J fs ( W )  dW becomes J cs (X) dX = C c, (x) dx where the 

elements V, c and X are now link-based vectors. Where the link costs are not 
independent, it is still possible to proceed by the so-called “diagonalisation” method, 
by forming a local approximation to the link cost functions (Sheffi, 1985). 

It will be seen that the supply integral is exactly what is required for the reasonably 
widespread application of Wardrop equilibrium assignment, using fixed demand. 
Hence, in spite of the intractability of writing out the supply functions in matrix terms, 

T V v, 

0 0 5 0  
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it is possible to calculate the supply integral on a link basis, in a way which 
corresponds exactly to procedures currently used in fixed matrix assignment. 

4. THE DEMAND INTEGRAL 

In the fixed demand problem, where the aim is to estimate the link flows, the demand 
integral is constant and can therefore be dropped from the objective function. In 
contrast, the variable demand problem requires both the (highway) flows and the level 
of demand to be determined. 

The specification of the objective function in terms of the inverse demand function 
has naturally led to the question of how these inverses might be defined, and a number 
of developments have flowed from this. The number of software applications for 
solving Variable Demand Assignment (VDA) problems is very limited, and most 
software is limited to demand functions having the specific property known as 
separability - that the highway demand for a particular ij movement does not 
depend on the highway costs for any other ij pair. This is compatible with the “simple 
elasticity functions” suggested by SACTRA and recommended in the current 
Guidance. An exception is the SATAST program (Arezki et al, 1996) developed 
under contract to the Highways Agency. 

The separability restriction on the demand functions, which is mathematically 
identical to that on the link cost functions, allows us to follow the original 
specification by Beckmann et al. 

With the reasonable proviso that demand should be a non-increasing function of cost, 
separability guarantees that the inverse demand functions exist, are unique and can be 
straightforwardly calculated, either directly by means of analytical formulae, or by 
simple numerical approaches. 

In itself, separability does not prevent the demand being dependent on other costs (eg 
for other modes, or other time periods) provided these costs are not adjusted within 
the course of the program run. However, while it is possible to take into account a 
number of different demand responses while observing the restriction, the restriction 
is in principle severe, and more or less rules out any allowance for redistribution. For 
this reason, it was considered essential to understand the computational implications 
of attempting to remove it. 

It is well known (Evans, 1976) that an appropriate objective function can be specified 
for one type of non-separable demand function, that associated with constrained 
distribution models. Further, Chapter 10 in Orhkar & Willumsen (1994) gives a 
useful discussion of the way in which researchers have developed VDA approaches 
with more complicated demand functions, within the general sphere of random utility 
models, going beyond the Beckmann et al formulation, and a substantial 
generalisation is given in Oppenheim (1995). These extensions retain the essential 
convexity properties, so that the Frank-Wolfe algorithm is a feasible approach. 
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By far the most common model form used in transport planning is the logit. It turns 
out that the demand integral can be represented in closed form for any hierarchical 
demand model based on a logit formulation where the “utility” is linear in generalised 
cost. In order to sketch this out, we introduce the concept of consumer surplus (CS), 
defined as the difference between the area under the demand curve and the total 
consumption, which we write as T.C. In other words, 

T 

0 
CS= JfD1(W)dW-T.C (4) 

Hence, the required demand integral &fo-’(W) dw = T.C + CS 

The reason for proceeding in this way is that there is a closed form expression for CS. 
It can be shown that the so-called composite cost C* , derived using the well-known 
“logsum” formula, is equal to the negative of the consumer surplus per traveller, up to 
an a rb i t rq  constant. While this is easy to show for a single-level logit model, it in 
fact applies to the hierarchical logit model as well: the overall CS is given by the 
negative of the composite cost at the top of the tree. 

If I is a unit vector with the same dimension as C, then T.1 = T*., the total demand 
over all travel possibilities. Hence, for any logit model, the demand integral can be 
represented, up to an a rb i t rq  constant, as T.[C - C*.I] where C* is a scalar quantity. 
However, to use this result in the objective function, we have to develop the formula 
as a function of T. The single level logit formula can be Written in vector form as: In p 
= -p ( C -&I), whence C - G.1 = -UP In p. We can therefore substitute in the 
demand integral equation, and obtain, up to an a rb i t rq  constant 

( 5 )  

&fo-’(w) dw= T.[C - c*.I] =-T.( i /p  In p) (6)  

In this way, we have expressed the demand integral entirely in terms of T, the demand 
matrix, or p, which is equivalent to l/T*.T. With a hierarchical logit model, the 
formula is only marginally more complicated., so that for a 4-level logit model with 
time of day conditional on mode, conditional on destination, conditional on frequency 
(origin), we would obtain 

where, with obvious notation, PT is the scaling parameter for generalised cost at the 
time of day choice level, etc. Hence, &fD-’ (W) d W  = 

In applying these formulae, it is important to recognise the role of the logit model as a 
model of shares, given an overall constant total. To Write out the formula for any 
chosen model, the analyst will need to identify at what level the constancy applies. In 
the illustration just given, it is assumed that the total travel T**** is constant. 



Compatibility between Supply and Demand Costs 

The derivation of the demand integral as the sum of CS and T.C needs to ensure that 
the costs being used for the calculation of T.C are compatible with those being used 
within the supply integral, if the objective function is to be properly defined. The 
closed form using the logit function relies implicitly on the fact that the costs C of 
individual alternatives ijmt contain all the required components - they are in fact pure 
logit ‘utilities’ scaled by -p (at the lowest level). As such, the Cumt contain all 
components of utility (ie including, according to the scope of the model, modal 
constants, destination utilities etc.). Hence, some further adjustment is required within 
the objective function. 

If we define the demand costs C as C = N + R (where N is network costs and R is 
‘residual’ costs), then the implication is that the demand ‘expenditure’ term T.C 
should be replaced by T.N, to make it compatible with the supply costs. Thus we 
correct the demand integral formula by subtracting T.R = Cijmt Tijmt. Rjjmt. This can be 
viewed either as bringing down the demand curve or shifting up the supply curve. 

In cases where we know all the items in R this correction is straightfomard. In other 
cases, it may be more tedious to calculate it. For example, if we had an incremental 
logit model with the same illustrative hierarchy, there is a base matrix No which, when 
combined with the unknown matrix R, generates the base demand To. In this case it 
can be shown that, writing q for the base shares: 

~i~~~ = CO**** -l/pT In (qt/ym) -1/pM In (qdij) -UP” In (q,i) -l/pF In (qi) - ~ O i j , , , ~  

where C’*W is the base overall composite cost. 

Alternatively, consider a singly constrained distribution model, with the choice of 
destination given by 

(9) 

Wj . exp(-pN j )  
p . .  = (10) 

’‘I W,. exp(-PN jk ) 
k 

where Wj is the “size” variable associated with destination zone j. In this case it is 
clear that R is given by the (implied) destination utilities, so that Ru = -Up In Wj. 

Hence we have a theoretical basis for calculating the demand integral. In all cases, it 
can be seen as an expression of consumer surplus, plus a term relating to total 
consumption (in demand cost terms) minus a correction for “residual consumption”, 
defined as the difference between consumption in demand and supply terms. In 
practical terms, this theoretical analysis means that it should be possible to extend 
conventional equilibrium assignment packages to enable them to handle some or all of 
the stages of conventional demand medelling. 

5. FORECASTING FUTURE DEMAND 

At any point in time, the demand curve fD(c) is constant for the scenario under 
consideration. However, over time, the population and land-use will vary, and this 
will lead to different demand curves, each related to a particular point in time. Where 
there are different views on how the future population and land-use will develop, 
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different planning assumptions (termed ‘scenarios’) may be required for the same 
year. The demand model therefore needs an interface with external ‘planning’ or 
‘land-use’ data (in particular, forecasts of car ownership) to reflect how the scenario 
assumptions affect total travel demand. 

We can represent the exogenous influences at any point in time by the “planning 
data”. The term “planning data” is here being used as a shorthand to include the 
effects of income, car ownership and licence-holding, and thus a somewhat wider 
definition than in normal usage. 

If we assume that the form of the demand curve (which governs the response to 
changes in cost) is unchanged, it follows that the shifting of the curve over time is 
entirely due to changes in planning data and, to a reasonable approximation, we may 
assume that for that scenario the planning data changes are independent of transport 
costs. 

Hence, as an input to a Variable Demand Model, we can predict the important effects 
of changes in planning data for each scenario in the absence of changes in (transport) 
cost. Typically, we already know a point (T ,C ) on the base year demand curve 
fDp(C), which we may take as an equilibrium point (so that it also lies on the base year 
supply curve). We can then develop a methodology to obtain growth factors y, on the 
assumption that costs remain at their base value of Cp. Note that it is not only the 
highway costs which must be held constant, but the costs for all transport alternatives. 

The ‘product’ of these factors y and the base travel T gives an estimate of the 
demand To which would occur under the future scenario if there was no change in 
transport costs. Hence what we refer to as the ‘reference’ point, (T ,C ), lies on the 
future demand curve, and we can use a formulation with this point as a ‘pivot’. 

Since there will almost always be a change in transport costs (not least because of the 
very ‘exogenous’ growth being modelled), the demand level associated with the 
Reference point is a hypothetical concept - it does not represent a realistic forecast of 
what will happen. That realistic forecast will have to be found by solving the 
equilibrium between supply and demand, using the principles set out above. 

Note that the supply curve will reflect not only any changes in the network, but also 
(exogenous) background changes in generalised cost, including, on the one hand, fuel 
prices (and, in a wider context, public transport fares), as well as, on the other, changes 
in values of time. Hence the supply curve is time dependent as well. In principle, 
however, it is independent of the specification of the demand curve. 

The result is that the costs C in the demand function are expressed in terms of future 
conditions for year y. Nonetheless, when using a ‘pivot’ formulation, they need to be 
compared with the base year costs Cp. This has some potentially important implications 
for the definition of units for the parameters in the demand model. Essentially, since we 
may view the demand model as a random utility model, we need to ensure that we have 
a constant definition of utility. 

The standard assumption is to define C in minutes, and to allow money costs to be 
deflated by the value of time. It is then assumed that the demand function parameters 

P P  

P .  
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remain constant (in time terms): this would appear to be the most neutral assumption, 
though empirical validation would be very difficult to achieve. 

Our preferred approach is thus: a) calculate growth rates y to obtain the future year 
reference matrix from a base year pattern TP on the basis of zero cost changes for all 
transport alternatives; b) hold the form of the chosen demand curve f(C) constant in 
time units; c) set the actual demand curve for the future year with reference to the 
initial condition (y.T ,C ), where the costs Cp are in equilibrium with TP in the base 
year; and d) ensure that the costs C used for the future year demand curve incorporate 
changes in the value of time, as well as any changes associated with fuel prices etc. 

6. DEVELOPMENT OF ALGORITHMS 

The standard way to solve VDA problems, given an objective function, is to use the 
modified Frank-Wolfe procedure suggested by Evans (1976). This is incorporated 
within the existing SATURN suite of programs for a limited range of separable 
demand functions. What follows is a very brief description of the main working of the 
algorithm, and does not go into the detail of all possible options. In particular no 
account is taken of the wider context of SATURN which allows for simulated 
junction cost functions etc. We also ignore questions of initial values, though this is a 
fruitful area of investigation. 

At iteration n we have an estimate of the current matrix T'") and flows V("). The flows 
determine the link costs, and from these we can find the minimum paths. We require 
the auxiliary solutions S(") (matrix) and W(") (flows). We begin by calculating the 
auxiliary matrix S'"), using the current minimum cost matrix C(") (dependent on V'")) 
and making a direct estimate of the implied demand, using the selected demand 
function. The auxiliary flow vector W(") is then obtained by assigning the auxiliary 
matrix S(") on an all-or-nothing basis to the minimum cost paths. 

Given the auxiliary solutions S and W, we carry out the line search (step size) with 
the aim of minimising the objective function, based on (h(").Wb) + [I-h(")]. V("), 
h(").S(") + [l-h(")]. T(")), with respect to h ("). The optimum value for h is then used to 
provide the current estimates for the next iteration. 

The implications are that provided there is no major complexity or computational cost 
in evaluating the objective function (or its differential, for the step length calculation), 
the existing SATURN algorithm can be directly extended to more complex demand 
problems, by substituting the new demand function for the current SATURN 
formulations in the calculation of the auxiliary S("), and modifying the objective 
function accordingly. This was originally tested for the "distribution and assignment" 
problem, and has since been tested for hierarchical logit specifications including 
distribution, mode choice and time of day choice. 

Note that the step length h is doing two rather distinct things: it is "averaging" 
between successive estimates of the demand matrix, and it is shifting traffk between 
existing paths and new paths for the equilibrium assignment. Although performance 
has been good on the relatively simple demand functions tested to date, there are 
theoretical concerns that this "dual r8le" may not be appropriate in all cases. 

P P  
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For equilibrium assignment in congested conditions, it will be rare for any single new 
path to take a substantial proportion of the traffk: from this point of view, h will tend 
to fall quite quickly as the number of iterations increases. If the demand matrix does 
not stabilise quickly, this tendency to low values could cause problems in 
convergence. For this reason, a bi-level approach is also being considered in which 
separate line searches are carried out, first for the equilibrium assignment for a curzent 
fixed demand, using the supply integral only, and then using the full objective 
function to adjust the demand matrix. Effectively, this can be seen as an alternative 
definition of the auxiliary W in the Evans algorithm. 

7. TESTING PROGRAMME 

Based on the theoretical review summarised in this paper, an ambitious programme of 
tests has been designed, with a number of aims in mind. A critical emphasis has been on 
the development of practical approaches: for this reason, the main test bed is a sizeable 
network based on an existing model for Glasgow, with both highway and public 
transport information, for three separate time periods. 

It remains a central task to provide some guidance as to the level of complexity 
appropriate in different modelling situations. The development of variable demand 
methods does not imply a commitment to using them in all circumstances. There are 
also questions about the appropriate level of segmentation (trip purposes etc.). 

As an example of a highly specified demand model, we are applying the model 
developed in OUT work for the Department on the Manchester Motorway Box (Skinner 
et al, 1997). This involves a detailed zoning system, with travel demand segmented 
into: home to work and employers’ business, work and employers’ business to home, 
home to education, education to home, home to other, other to home, and non-home 
based, and further segmentation between car-owning and non-car-owning households; 
three modelled time periods; car, public transport and walWcycle modes (and freight); 
(macro) time of day, mode, destination and frequency choices modelled using a 
hierarchy of logit models, with the order of choices varying by trip purposes. 

A number of key issues are being addressed. By Convergence, we intend both the 
methods (or algorithms) by which equilibrium is attained, and the accuracy with 
which it is attained. A related issue is the definition of convergence criteria 
themselves. We have a number of possibilities, including damped ‘cobweb’ 
approaches, and the single and bi-level fully integrated approaches. These reflect two 
factors - the necessary level of complexity, and the current availability of software. 

In terms of the Modelling of Demand, there are a large number of possibilities: the 
aim is to cover the range between the elasticity-based approaches as envisaged in the 
current Guidance (ie, incorporating the “separability” restriction) and the “full” 
multimodal demand model incorporating a number of different transport choices, as 
described above. A crucial element here is the level of complexity necessary to obtain 
results adequate for appraisal. If comparable results can be obtained by simpler 
demand functions, then such methods would be preferred on practical grounds. 

One of the main comparisons is of the efficiency of the computational process - that 
is, for a given demand model, how do the different algorithms compare in terms of the 
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level of convergence achieved and in the time taken to reach that level? Other 
comparisons relate to economic evaluation. In this case, there are questions of 
sensitivity both to the level of convergence and to the choice of demand function 

Preliminary indications are that after allowing some “tuning” with reasonable 
heuristic (“cobweb”) methods, objective function methods could achieve similar 
levels of convergence in about one-fifth of the computing time. At the same time, the 
uncertainty about convergence with heuristic methods is removed. 

These techniques potentially offer a significant improvement in the accessibility of 
multi-modal transport modelling techniques and the DETR is exploring how the 
techniques can be most effectively promulgated when testing is completed. However, 
an extensive programme of testing must be completed before they can be released for 
general use. 

ACKNOWLEDGMENT 

The work reported in this paper is being carried out for HETA Division of the UK 
Department of Environment Transport and the Regions (DETR). The views 
ex4resped are the authors’ and do not represent those of the DETR. 

REFERENCES 

Are& Y, Hall M D, Hyman G & Mackenzie I (1996). Simultaneous Assignment 
Distribution and Mode Choice in NAOMI (also indexed as Arezki, Hall & Hyman: A 
Simultaneous Incremental Equilibrium Assignment and Dual Trip Distribution for 
Multiple User Classes), PTRC European Transport Forum, Seminar D Proceedings. 

Beckmann M J, McGuire C B & Winston C B (1956), Studies in the Economics of 
Transportation, Yale University Press, New Haven, Conn 

Design Manual for Roads and Bridges, Induced Traffic Appraisal, Vol 12, Section 2, 
Part 1 

Evans S P (1976), Derivation and Analysis of some Models for Combining Trip 
Distribution and Assignment, Transportation Research, 10(1), 37-57 

Oppenheim N (1995), Urban Travel Demand Modelling: From Individual Choices to 
General Equilibrium, John Wiley & Sons. 

0- J de D & Willumsen L G (1994), Modelling Transport, John Wiley & Sons 

SACTRA (1994), Trunk Roads and the Generation of Traffic, HMSO 

Sheffi Y (1985), Urban Transportation Networks, Englewood Cliffs, N J  Prentice Hall 

Skinner A, Coombe D, Bates JJ, Fowkes A and Hyman G (1997), Feasibility of 
Measuring the Induced Traffic Effects of the Manchester Motorway Box, PTRC 
European Transport Forum, Transportation Planning Methods Seminar (Volume I) 

207 



I 
Supply Curve 

Equilibrium 
Point 

Demand Curve 

I 
Volume of Trips 

Figure 1 : Demand/Supply Equilibrium 

Do Something 
Supply Curve 
(capacity reduction/ 

.- n cost increase) * Do Minimum 
Supply Curve 

Do Something 
Supply Curve 
(capacity increase/ 
cost reduction) 

New 
Equilibrium 

Point 

A yg B, R. 

I / r_ 

- Base Year 
- I  / '  Original 

Demand Curve I cquilibrium 
Point 

Volume of Trips 

Figure 2: Appraisal in the Base Year 

208 


