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1 ABSTRACT 

The quality and availability of traffic data has been significantly improved in the 
last few years. More and more, loop detector data and floating car data 
becomes available (real time). This offers opportunities for new tools for traffic 
flow analysis and prediction relevant for operational traffic management 
services. Being able to detect and predict incidents, e.g. queues, accidents and 
car breakdowns in an early stage, offers the opportunity to act faster and 
therefore reduce or even mitigate congestion problems compared to current 
practice. This paper describes a model based real time short term predictor and 
its application results, developed to predict traffic states on road segments of 
typically 50-300 meters on a complete urban and non-urban networks.  
  
This short term predictor is based on four key features; data fusion, real-time 
estimation of the fundamental diagram, fuzzy traffic state estimation and traffic 
flow simulation. Traffic flow theory is used to aggregate and fuse data from 
various data sources (i.e. loop detector data, floating car data and traffic light 
data) into detailed traffic state estimations per minute. The basis for fusing and 
completion of data is a macroscopic traffic propagation model within 
OmniTRANS transport planning software which is also used for near future 
prediction purposes (up to 10 minutes). As road capacity varies for weather 
conditions, lightness, number of vehicles et cetera  a self-adapting module is 
used to constantly estimate and update parameters which describe the 
fundamental diagram for road segments (such as free flow speed, capacity and 
speed at capacity). Every minute a model-run is performed resulting in actual 
and near futures traffic states. Subsequently a virtual patrol analyses the 
measured and modelled data using fuzzy logic to detect incidents on the road 
network and identify and predict congestion in the near future.  
 
This model-based short term predictor has now been applied with success on 
the A10 orbital road of Amsterdam (NL) and on a secondary road network of 
Almere consisting of ten traffic lights. This paper describes the approach used 
and the results of these two cases.  
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2 INTRODUCTION 

Such as in many European countries, the use of urban and interurban roads is 
increasing in the Netherlands. As a result road networks are running out of 
capacity and congestion is increasing as well as the vehicle hours spent. This 
causes societal disbenefits which increases the urge to solve the problems. 
One of the solutions is to provide traffic managers insight in the current traffic 
conditions and near future events to act upon this information and to better 
inform car users during their trip. The latter can be done with road side units 
such as Variable Message Signs and within vehicles using in-car equipment. 
Providing complete current and near future traffic conditions requires advanced 
methods combining data sources and modelling techniques.  
 
The quality and availability of traffic data has been significantly improved in the 
last few years. More and more, loop detector data and floating car data 
becomes available (real time). This offers opportunities for new tools for traffic 
flow analysis and prediction relevant for operational traffic management 
services. Being able to detect and predict incidents, e.g. queues, accidents and 
car breakdowns in an early stage, offers the opportunity to act faster and 
therefore reduce or even mitigate congestion problems compared to current 
practice. Supported by the projects CHARM (co-operation between Highways 
England (UK) and Rijkswaterstaat (NL)) and the iCentrale initiative (Dutch 
Program in which local, regional and national authorities work together with 
private parties on better traffic management) a model-based short term 
predictor has been developed and applied for several real life cases.  
 
This paper describes the theory behind the developed short term predictor and 
presents the approach and results for two case studies in which the short 
predictor has been implemented. 

3 THEORETICAL BACKGROUND 

The development on this model-based short term predictor is primarily based 
on traffic flow theory within a macroscopic model environment. Additionally, 
state-of-the-art techniques related to both incident detection and prediction are 
implemented.  
 

3.1 Fundamental diagram 
From Greenshields’ observation in the 1930’s on, many research has been 
done on the relation between traffic flow, speed and density of which the mutual 
relation can be described by a fundamental diagram. The currently considered 
best approximation of the flow density diagram is described by the inverse-
lambda shape. Within this shape the “left-branch” can be seen as the free flow 
branch and the “right branch” can be seen as the congested branch.  
 
However, although the fundamental diagram describes a theoretical relation 
between flow and density, “real” traffic does not strictly behave according to this 
homogeneous behaviour described by the fundamental diagram. Measured 
data will contain scattered measurements around the fundamental diagram. 



© AET 2017 and contributors 

3 

Especially the congested branch of the fundamental diagram has shown to be 
very non-heterogeneous.  
 

 
 

Figure 1: Observations of traffic flow (Treiber and Kesting 2013) 
 
Although the “right branch” of the fundamental diagram is often associated to 
as the congested branch, Kerner (2003) differentiates into two phases: 
synchronized flow and the wide moving jam. The wide moving jam is 
characterized by the upstream movement of the downstream jam front with a 
constant speed. The downstream front of synchronized flow is normally fixed at 
a bottleneck.  

3.2 Congestion prediction 
To determine or predict current and near future traffic states, basically two 
approaches can be recognized. On the one hand, model-based approaches 
aim at reproducing traffic situations within a model environment in order to 
propagate these traffic states for prediction purposes (Kaysi et al. (1993) , 
Wismans et al. (2014), Vlist et al. (2016). On the other hand, data driven 
approaches make use of extensive historic data sets to make estimations for 
near future situation Huisken and Coffa (2000).  
 
Not much research has been published regarding real-time traffic state and 
congestion prediction. Kaysi et al. (1993) suggested an Advanced Traveller 
Information System (ATIS) in which historical and updated Origin-Destination 
matrices were used as input for congestion prediction. It has been suggested 
by the authors to use 3-Dimensional O-D matrices (with time as a third 
dimension) to feed a Dynamic Traffic Assignment (DTA) model. This concept 
has been brought into practice by Wismans et al. (2014) who implemented it for 
the Assen region in the Netherlands showing the concepts feasibility. However, 
the authors note that the scalability and the quality of the predictions of this 
approach are points of attention. Vlist et al. (2016) elaborated further on these 
points of attention especially regarding the quality of the prediction results. An 
extensive and continuous calibration process of the network conditions was 
introduced to improve predictions.   
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4 SHORT TERM PREDICTOR 

Following the approach by Vlist et. Al (2016), the core of the developed short 
term predictor is a macroscopic dynamic traffic assignment model. Basically, 
the traffic model is used to process raw traffic data in meaningful estimation and 
predictions of traffic states for an entire network. Complementary to the model 
core, supporting submodules have been developed to process raw data, 
calibrate and improve traffic propagation and allow incident detections. 
 
For this purpose, it has been chosen to elaborate on a model-based approach 
instead of a data-driven approach as for traffic monitoring and management 
purposes unexpected events are of special interest compared. A data-driven 
approach might be strong in predicting expected and average traffic flow 
patterns and identifying unexpected events in current traffic flow, but such 
approach is not likely to be successful in predicting the effect of accidents or 
other unexpected events in advance. Furthermore, the model-based approach 
has showed to be easily scalable and calculation times are more than fast 
enough for real time application.  
 

4.1 Framework 
First a network must be made available within a macroscopic traffic model. For 
these developments it has been chosen to make use of the state-of-art dynamic 
traffic model Omnitrans. Within the traffic model the complete network for which 
the short term predictor has to operate is included. Subsequently a data 
processing submodule processes raw data. Data is extracted from its sources, 
fused with other data sources and mapped on the available network. This 
processed data is input for the model environment in which demand and supply 
are calibrated and traffic state predictions are handled.  
 

 
Figure 2: Framework of the model-based short term predictor 
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4.2 Data processing 
The data processing submodule is responsible for extracting and receiving raw 
real time data from various sources (i.e. loop detector data, floating car data 
(FCD) or traffic light count data). Raw data is fused and mapped onto the model 
network, providing minute averaged speed and count measurements for 
specific segments. The submodule also deals with the differences in latency of 
the various data sources. Within both use cases in which the short term 
predictor has been implemented it has been observed that data latency can be 
up to several minutes. Such latency does have a serious effect on the response 
time for incident detection.  

4.3 Demand calibration 
The fused measurement data connected with the model network is used for 
calibration of the model demand. Flow measurements are used to scale historic 
origin-destination(OD) matrices in such way that traffic demand fits the demand 
profiles on predefined locations (typically locations on the borders of the 
network). 

4.4 Supply calibration 
As a result of various internal (e.g. speed limits, number of available lanes set 
by traffic managers or traffic management systems) or external influences (e.g. 
weather conditions, amount of freight traffic) available supply and traffic 
behavior differs over space and time. Note that both free flow speed and 
capacity will decrease in cases of fog or rising freight rates. Due to these 
dynamics, an assumption of fixed fundamental diagrams for the network would 
result in inaccurate propagation of traffic over the model network as well as 
inaccurate detection of incidents and congestion, which affects the quality of 
traffic state predictions. To avoid the need of various additional data sources 
like weather conditions and settings of measures as well as the translation of 
their impact on flow propagation via behavioral models we use measured data 
to continuously calibrate the fundamental diagrams for each link in the model 
environment reflecting directly these pre-mentioned influences. Fundamental 
diagrams are calibrated in three ways depending on the actual traffic conditions: 
unsaturated free flow, saturated free flow or congestion.  
 
Under unsaturated free flow conditions flows are relatively low and vehicles 
affects each other driving behavior to a minimum. Such conditions are helpful 
to determine or update the free flow speed of the particular road segment. 
 
When traffic flow is in (highly) saturated free flow condition, traffic is still in free 
flow conditions, but individual vehicles affect each other’s driving behavior to a 
large extent. Under such conditions traffic speed has dropped compared to the 
speed under unsaturated conditions and is around the so-called speed-at-
capacity. The speed-at-capacity describes the transition from the “free flow 
branch” to the “congested branch” within the concave four parameter Van 
Aerde fundamental diagram (Van Aerde (1995)) used within this approach. 
Therefore, such conditions are helpful to update the speed at capacity of the 
fundamental diagram for the particular road segment. 
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As described in the theoretical background, traffic behaves very non-
heterogeneous under congested conditions. This means traffic measurements 
are widely scattered around the theoretical congested branch as described by 
the fundamental diagram. Therefore, fundamental diagram calibration is very 
complex under such conditions. However, if measured data implies congested 
conditions while previous model predictions did not foresee so, road capacity 
within the model environment is likely to be overestimated. Under such 
circumstances capacity can be calibrated in such way that model capacities 
reflect “real” capacities better. As congested conditions within (in the middle of) 
a queue are not the result of local lack of capacity, but of a downstream 
bottleneck, calibration of road capacity is solely done for the downstream road 
segment of a queue. For urban road networks this approach is also used to 
calibrate the effect of traffic lights into the model parameters. Capacity of the 
downstream link of each branch of the intersection is continuously updated in 
order to include the effect of traffic lights. However, it needs to be remarked that 
for this purpose it is not aimed for to simulate green light distributions of traffic 
lights exactly. No real “stop-and-go” effects is simulated around the intersection 
but more averaged traffic states over time.  
 

4.5 Traffic state estimation and prediction 
Within the model environment StreamLine::Madam is used for traffic estimation 
and prediction. StreamLine::Madam is a macroscopic dynamic traffic 
assignment model that translates traffic demand on OD-level over time into 
traffic flows, speeds and densities on a link level for each time-period. 
StreamLine::Madam reproduces the actual traffic situation (combined with the 
previously described calibration processes) and calculates traffic states for the 
short term prediction horizon which is typically 1 to 10 minutes. The 
streamline::Madam submodule consist of four steps which are illustrated in 
Figure 3. 

 
Figure 3: The process of traffic state estimation and prediction 
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The first step is to set initial traffic conditions so that traffic states for the full 
networks matches traffic states based on measurements. Compared to the 
traditional network loading process of dynamic models an alternative approach 
is used for this step to save valuable calculation time. With a so-called warm 
start the product of step 3 of a previous simulation run is placed directly on the 
network as starting point of the simulation. After this process 
StreamLine::Madam propagates traffic for a ten minute calibration process in 
step 2. Note that the calibration step is done using previous minutes for which 
measurements are known. After each minute of propagation the supply 
calibration submodule as described before updates supply parameters. 
Consecutively, after all supply parameters have been optimally updated, in step 
3 traffic states on the network are updated using most recent measurements. 
At last, StreamLine::Madam propagates traffic for second time for typically a 
ten minute prediction horizon.   
 

4.6 Incident detection 
Besides a traffic state prediction the short term predictor does also assess 
predictions and measurement data in order to detect incidents on the network. 
This is primarily done by comparing live measurement data with previously 
predicted traffic states. For this comparison first a classification of the data is 
made. Each road segment is classified with a likelihood of being congested. If 
traffic flow is clearly within the congested branch of the fundamental diagram 
this likelihood is set to 1. On the other hand, if traffic flow is clearly uncongested 
the likelihood is set to 0. As traffic behaves non-heterogeneous around capacity 
fuzzy rules including speed and flow are needed to classify the likelihood of 
road segments on which traffic is around capacity.  
 

 
Figure 4: The likelihood framework used for incident detection 

 
Using this qualification incident detection is performed for any road segment for 
which measured data is available. For each road segment the measured 
likelihood is compared to the predicted likelihood. The predicted likelihood is an 
aggregation of all previously predicted likelihoods of previous model runs in 
which old predictions are weighted less then more recent predictions. In cases 
that the measured likelihood of congestion does not fairly match the predicted 
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likelihood, a probability is calculated of an incident has happened on this 
location. For example: If predictions did only show free flow traffic on a particular 
road segment while recent measurements definitely show a congested 
situation, the road segment is flagged with a high probability that an incident 
occurred on that location. 
 

4.7 Online monitoring environment 
Both traffic state predictions and incident detections are communicated using 
an online monitoring environment. In this environment speed and flows are 
visualized for current and near future time steps for the full network. Figure 5 
shows a visualizations of this monitoring environment for both use cases in 
which the short term predictor is implemented. Complementary to this online 
monitoring environment traffic state predictions and incident detections can be 
communicated to traffic management centers in which they can be helpful in 
active traffic measurements and within decision making processes related to 
scenario planning. 
 

  
 

Figure 5: Examples of the online demonstration tool for traffic predictions 
 

5 CASE STUDY 

The short term predictor has been implemented in two use cases. These use 
cases come forward from two projects in which this short term predictor has 
been developed and implemented. Supported by the CHARM-project (co-
operation between Highways England (UK) and Rijkswaterstaat (NL)) a 
highway use case has been set up. Besides, within the iCentrale initiative 
(Dutch Program in which local, regional and national authorities work together 
with private parties to improve traffic management services) the short term 
predictor has been implemented within an urban road environment. Both use 
cases differ on scaling and complexity. Where on highways road capacities are 
the major cause for delays and congestion, congestion on urban road networks 
is primarily caused by the impact of (signalized) intersections. With the 
presence of intersections, lower data availability as well as data quality (e.g. as 
a result of penetration rates of floating car data and smaller absolute numbers 
of vehicles), larger routing options, the presence of actual origins and 
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destinations (e.g. vehicles parking or departing on road segments) and mixture 
with various types of road users on urban road networks, such environments 
are far more complex than highway environments. 
 
The highway use case includes a network of highways around the city of 
Amsterdam in the Netherlands: the A10 orbital road. For functional reasons the 
network includes not only the highway sections itself but complementary it 
includes all on- and off ramps and connections to connecting highways. The 
highway use case has been implemented in a live environment. Both streaming 
loop detector data as floating car data has been processed in real-time and 
traffic has been monitored in a live environment. Figure 6, visualizes the 
selected network. 
 

  

Figure 6: Use case network (left: the Amsterdam A10 orbital road highway 
use case, right: the Almere urban road corridor use case 

  
The urban road use case consists of a corridor including multiple intersections 
of which 10 are signalized. The network describes a major corridor from the A6 
highway towards the city centre of the Dutch town Almere. In contrary to the 
highway use case, the urban road use case has been implemented in an offline 
environment. No live data is processed within this use case. However, for 
simulation purposes a live environment is imitated in which no live but historic 
data is processed resulting in streaming loop detector data, floating car data 
and traffic light data. 

6 RESULTS 

In both use cases similar evaluation indicators have been used to assess the 
quality of the output of the short term predictor. These indicators combined give 
a good qualification of the module performance on its predictive ability. 
 

6.1 Evaluation framework 
The evaluation framework consists of two indicators. A global network indicator 
based on the number of kilometers of congestion in the complete network and 
a network indicator assessing the accuracy in predicting the correct locations 
of congestion as well as non-congestion. The evaluation which is done 
afterwards focusses on the extent in which the predictions match the 
measurements. Complementary to these assessment indicators the quality of 
the incident detections is assessed, focusing on the current traffic conditions.  
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The assessment of accuracy of the model is calculated by comparing the 
predicted states for the single road segments with the measurements. Road 
segments of typically 50-300 meter are used for the calculation of the accuracy. 
Therefore, similar to the global network indicator the results of the short term 
predictor are ex post compared to measurements. However, in contrary to the 
global network indicator the statistical framework helps to assess whether or 
not congestion is prediction on the correct locations on the network. Assuming 
a single road segment can either be congested or non-congested, the 
comparison of the results of the short term predictor with measurement can 
result in four possible combinations. A congested prediction can either be true 
or false and so can a non-congested prediction be, resulting in four quadrants: 
 
Q1: True Positive  
Q2: False Positive 
Q3: False Negative 
Q4: True Negative 
 
For every link segment within the network the indicator determines for each 
modelled minute to what quadrant it belongs. From these segment results an 
overall evaluation of the accuracy of the model can be calculated: 
 
Accuracy = (Q1+Q4)/(Q1+Q2+Q3+Q4) 
 

6.2 Highway use case 
The short term predictor has proven to be successful in reproducing and 
predicting network traffic states. Where congestion is varying over time and 
space during the day, the short term predictor is able to follow and predict these 
patterns. Figure 7 visualizes the +6 minutes predictions of the short term 
predictor against the measured data in terms of congestion kilometres per 
minute. As it can be seen, the module is well able to predict fluctuation in 
congestion over the day. 
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Figure 7: Measured versus predicted (+6 minutes) congestion kilometres on 

the modelled network  
 
Besides a successful reproduction of traffic patterns, the short term predictor 
has also proven to do so with a relatively high accuracy. The accuracy of the 
model has been determined for each morning peak for a one-week period for 
both three and six minute predictions. These evaluation results are presented 
in figure 8. Overall, it can be seen that the accuracy of the module is reasonably 
high with an average accuracy of over 90% for both three and six minute 
predictions. For morning peaks an average accuracy is reached of 95% for 
three minutes prediction and 93% for six minute predictions. For evening peak 
periods the accuracy level is only slightly lower with an average accuracy of 
92% for three minute and 91% for six minute predictions. 
 

 
Figure 8: Accuracy figures for morning peaks on weekdays 

 
For one of these morning peaks a more detailed analysis of the accuracy is 
performed. In figure 9 the four quadrants used for the accuracy calculation are 
visualized for a single morning peak. The sum of the true positive and true 
negative is the accuracy level as presented before. From figure 9 can be 
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concluded that the network was largely in free flow condition during this 
particular morning peak. Furthermore, the number of false positives and false 
negatives are reasonably equally distributed over time, which means that the 
accuracy does not differ depending on the level of congestion within the 
network. However the congestion was not always predicted on the exact correct 
position, although the total number of congestion kilometers shows an accurate 
match. Further analysis shows that in some cases the model predicts 
congestion to occur a few segments downstream of its actual location and in 
some cases the model slightly under- or overestimates the shockwave speed 
of a queue. 
 

 
Figure 9: Detailed visualization of accuracy figures for 11th may morning peak 
 

6.3 Urban road use case 
Just as for the highway use case the short term predictor has proven to be able 
to reproduce actual traffic situations in the urban case reasonably well. The 
accuracy on an average morning peak has been calculated to be 96% for the 
current situation. This fairly good reproduction of the actual traffic situation 
offers an excellent starting point for the prediction horizon. Here it is seen, that 
accuracy decreases the longer term the prediction is. For 10 minute predictions 
the accuracy level is still 88%. The decrease in accuracy is best to be explained 
as a result of uncertainties in intersection delay. Intersection capacity is to be 
calibrated by the supply calibration, but due to varying green light distributions 
in the prediction horizon it might differ more for coming minutes than is the case 
for capacities calibrated for highway segments. Furthermore, it can be expected 
that the variation in local demand in urban networks differs more as a result of 
the influence of intersection on the propagation of traffic, larger routing options 
and smaller absolute numbers of cars on specific segments resulting in larger 
relative deviations, which earlier also addressed as factors increasing the 
complexity on urban networks. 
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Figure 10: Detailed visualization of accuracy figures for an average morning 

peak 
 

7 DISCUSSION AND CONCLUSIONS 

Implementation of our model based short term predictor in two use cases has 
proven our developments to be successful in traffic state estimation and 
prediction. From various data sources the short term predictor successfully 
provides a complete and consistent picture over space and time for a complete 
network offering the opportunity to serve as the common operational picture for 
traffic management purposes. The model-based approach handles regular but 
also irregular events affecting the supply parameters of the network and the 
network demand. Furthermore, it allows the possibility to not only detect and 
predict near future traffic states based on actual situation, but as well calculate 
the effects of multiple what-if scenarios (i.e. traffic management scenarios).  
 
With an accuracy of around 90% (and higher) the short term predictor has now 
been implemented in both a highway as an urban environment. To improve 
performance of the module significantly one should focus on two domains. On 
the one hand, experience within these two use cases has shown, that although 
supply calibration has been given major attention, the quality of traffic demand 
is a crucial element that can affect prediction quality. More advanced demand 
calibration algorithms have however showed to require too much computational 
effort within a live performing algorithm. Therefore, further developments on this 
short term predictor will definitely take this issue into account. 
 
A second domain which needs further attention, is data availability and latency. 
For both use cases calculation of traffic state estimation and prediction was 
very fast and convenient for live applications. However, latency on traffic 
measurement data has showed to be a serious aspect. Depending on the data 
source, latency of up to several minutes have been observed. As such 
measurement data forms the basis for any approach (model-based or data-
driven) for traffic state estimation or incident detection, such high latencies 
significantly affect the response time within incidents are noticed and measures 
can be taken. Therefore it is advised that more effort is committed towards 
making data available faster.   
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