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Abstract 
Investments in rail infrastructure are often motivated by the need to reduce 
travel time and to reduce travel time unreliability. Knowing travellers’ valuation 
of travel time unreliability relative to in-vehicle time and travel cost is hence 
important for cost-benefit analysis of rail investments. For scheduled services 
with relatively high reliability and long headways, the most common approach 
seems to be the “expected delay” approach, where passengers are assumed 
to value a possible delay proportional to its expected value.  
 
Using three different data sets, we investigate whether the expected delay 
approach holds empirically. In particular, we study how the valuation of a 
possible delay with probability p and length L depends on p and L.  
 
The main result is that this valuation is not proportional to the expected delay, 
but increases slower than linear in the delay probability. This is particularly 
pronounced for small risks. This means that estimated “values of delay time” 
will depend on the delay risk  level p: “delay time values” will be higher the 
lower the risk levels in the study are. This means that estimated values of 
delay times which do not take the non-linearity in delay risk into account will 
result in valuations that cannot be transferred between contexts with different 
delay risks. We also give a theoretical reason why this should be an expected 
phenomenon, as long as headways are large.  
 
Regarding the dependence on delay length L, the valuation increases slower 
than linearly in L in about half of the cases, whereas in the remaining cases,  
the linearity hypothesis (the valuation is proportional to delay length) cannot 
be rejected. Contrary to what might be expected, the valuation never 
increases faster than linearly in delay length.  
 
Accounting for random population heterogeneity turns out be important. In 
particular, the valuation of delays is shown to have a much larger variation 
across the population than the valuation of travel time or travel cost. 
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1 INTRODUCTION 
The purpose of this paper is to investigate how passengers on long-distance 
trains value unexpected delays relative to scheduled travel time and travel 
cost. We use three different data sets to explore how the value of a possible 
delay varies with the delay risk and delay length. In particular, we are 
interested in investigating whether the commonly used “expected delay” 
approach holds empirically.   
 
Investments in rail infrastructure are often motivated by the need to reduce 
travel time and to reduce travel time unreliability. Knowing travellers’ valuation 
of travel time unreliability relative to in-vehicle time and travel cost is hence 
important for cost-benefit analysis of rail investments. Several countries (to 
our knowledge Holland, Sweden and the UK) have introduced travel time 
reliability benefits in their official appraisal schemes (CBA guidelines etc.). 
Knowledge of travellers’ valuation of delays is also crucial for the construction 
of (socially) efficient timetables, and for the possibility of constructing useful 
incentive contracts between train operators and track operators. Such 
incentive contracts have recently been tested by the Swedish Rail 
Administration and the main Swedish train operator SJ.  
 
The variability of travel time in general has received increasing interest the 
last few years, both in terms of research and applications. Most studies of 
travellers’ valuation of travel time variability have used one of two possible 
different approaches: the scheduling approach, where the traveller’s departure 
time choice is explicit in the model, or the reduced-form approach, where 
some measure of the variability is introduced directly in a reduced-form 
indirect utility function. As a measure of the variability, most studies have used 
either the standard deviation of the travel time or the expected delay 
compared to scheduled arrival time, although some studies include both 
(Batley et al., 2007) and some studies use percentiles of the travel time 
distribution (Lam and Small, 2001).  
 
In the literature, the standard deviation approach seems to be the method of 
choice for situations with high travel time variability and good opportunities for 
travellers to adjust their departure time. Typical settings would be congested 
car traffic and urban (high-frequency) transit services. The expected delay 
approach, on the other hand, seems to be the method of choice for scheduled 
services with fairly high reliability (i.e. where most arrivals are “on time”) and 
limited flexibility of departure time due to long headways. A typical example is 
long-distance train trips. For example, this is the measure used for Swedish 
train CBA (SIKA, 2008), and it is the recommended measure in the UK 
Passenger Demand Forecasting Handbook.  
 
Although this generalisation is obviously not clear-cut, there are two good 
reasons for the measures of variability to be different in the two types of 
context. First, it can be proved that when departure time can be chosen freely 
(and a few other assumptions), the resulting disutility of travel time variability 
will be proportional to the standard deviation (see references and further 
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explanations in section 2). If departure time is fixed, on the other hand, one 
can derive (under certain fairly restrictive assumptions) that the resulting 
disutility of travel time variability will be proportional to the expected delay (see 
section 2). Second, the travel time variability for car and urban transit trips is 
typically much higher than for long-distance trains1, and this has implications 
for the way stated preference surveys present different variability levels to 
respondents. While in high-variability contexts, the method of choice seems to 
be to illustrate the travel time distribution by presenting a representative 
sample of travel times (typically 5-10), the method of choice for longer train 
trips seems to be to state the risk of delay of certain length(s), compared to 
the scheduled arrival time. Examples of the former presentation method can 
be found in Black and Towriss (1994), Small et al (1999), Bates et al (2001) 
and Hollander (2005a), while examples of the latter method can be found in 
Kroes and Kouwenhoven (2005, 2007), Rietveld et al. (2001) and Eliasson 
(2004).  
 
As stated above, the focus of this study is to investigate how passengers 
value a risk for a delay with a given probability and length. In particular, we 
are interested in the whether the disutility of such a delay risk is proportional 
to its expected value. This is not only important for cost-benefit analysis: it is 
also commonly used as a quality measure by train operators. For example, 
both UK and Swedish train operators use “average delay per train” as an 
indicator of punctuality. Since it can be expected that the choice of quality 
indicator also affects which measures and investments are chosen, knowing 
whether this is a good quality measure has practical importance.   
 
Section 2 presents a brief overview of relevant theory and literature. In the 
final part of the section3, we expand and discuss the motivation for the use of 
the expected delay approach. Section 3 presents the data material, and 
section 4 presents estimation results. Section 5 concludes.   

2 THEORY, TERMINOLOGY, LITERATURE 
As stated above, travel time variability can be (roughly) grouped into types: 
scheduling models and reduced-form utility models. In the former type, the 
traveller’s choice of an optimal margin to reduce consequences of a possible 
delay is modelled explicitly. In the latter type, some measure of travel time 
variability is introduced in the (indirect) utility function. The two most common 
variability measures are the standard deviation of travel time and the expected 
delay compared to scheduled arrival time. Below, we will first discuss the 
scheduling model and how it leads (under certain assumptions) to either the 

                                            
1 The coefficient of variation of car travel times in congested conditions is typically 0.2-0.3 
(Black and Towriss, 1993; INCA, xx; Eliasson, 2005), which also seems to be a 
representative figure for transit trips (although the coefficient of variation for transit trips is 
harder to define and compare, since it will depend on the service frequency and the number 
of interchanges): it is for example consistent with available Stockholm data on delays and 
average trip times. This can be contrasted with long-distance train trips, where typically 80-
90% of trains are ”on time” (usually defined as within 3 or 5 minutes within scheduled arrival 
time; Rietveld, 2001; Kroes and Kouwenhoven, 2007; see also below), implying a coefficient 
of variation in the range 0.05-0.15. 
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standard deviation approach (treated first) or the expected delay approach 
(later in the section).  

2.1 Scheduling models  
Following Vickrey (1969) and Small (1982), assume that the traveller’s utility 
depends on the travel time and the deviation from the planned arrival time. 
Note that the planned arrival time is not necessarily the same as the preferred 
arrival time: this often creates confusion. In short, the preferred arrival time is 
the time where traveller would like to arrive, while the planned arrival time is 
the time when the traveller plans  to arrive. There are several reasons why 
these might be different: for example, the traveller may choose a different 
departure time to avoid congestion, or because transit headways put 
constraints on the departure time. (A further discussion can be found in 
Börjesson, 2006, together with a model which both contain the scheduling 
cost of deviation from the preferred arrival time and the cost of travel time 
variability, i.e. the risk for deviation from the planned arrival time.)  
 
Using the notation from Fosgerau and Karlström (2007), the scheduling utility 
function is typically some variation of  
 

u(D,T) = αD + ωT + β(T-D)+
 (1.) 

 
where T is the random travel time and D is the headstart relative to the 
planned arrival time. The notation (x)+ is a shorthand for the function max(x,0). 
ω is the direct utility of time spent on the trip, and α is the (relative) opportunity 
cost of travel time (”time as a resource” to use a term from De Serpa, 1971). α 
is sometimes referred to as “the disutility of being early”, but we prefer to view 
it as the utility difference between time spent at the origin and time spent at 
the destination before the planned arrival time – hence, the (relative) 
opportunity cost of time. β is the disutility of “lateness”, i.e. arrival after the 
planned arrival time. Usually, the “lateness penalty” is assumed to be linear in 
the lateness, although some authors have suggested a step function (an extra 
penalty as soon as the traveller arrives after the planned arrival time), and 
some authors have suggested that the marginal disutility of lateness may be 
either increasing or decreasing.   
 
Several studies have estimated variants of such utility functions, resulting in 
what is called scheduling models. Given the utility function and the distribution 
of the travel time, travellers’ optimal headstart D* can (in principle) be 
calculated, and hence the disutility incurred by the travel time uncertainty. This 
will result in a reduced-form utility function u*(ΦT) = ET[u(D*,T)], taking only the 
travel time distribution ΦT as argument. An advantage of scheduling models is 
that they can also serve as departure time models. Their main weaknesses 
are that they need information of travellers’ preferred arrival times, and are 
often computationally intensive to use.  

2.2 Mean-variance models 
Often, the effect on travel time variability on departure times is of less interest. 
Instead, the purpose of a study may be to obtain a value of travel time 
variability for use in cost-benefit analysis or demand modelling. In such cases, 
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estimating the reduced-form utility function u* directly is often the preferred 
method, in particular since this circumvents the need to solve for D* and then 
calculating u* in a second step. Various forms of such reduced-form utility 
functions have been proposed and used, the most common being the mean-
variance approach (where the mean and the standard deviation of ΦT enter 
the utility function) and the expected delay approach (where the scheduled 
travel time and the average delay enter the utility function).  
 
Fosgerau and Karlström (2007), extending results by Noland and Small 
(1995) and Bates et al. (2001), show that as long as the headstart D can be 
chosen freely and that the travel time distribution is independent of departure 
time (although they show that this condition is of less practical importance), 
the reduced form utility function can be written as 
 

u* = (α+ω)t + βH(α/β,Φ’)σ  (2.) 
 
where Φ’ is the standardised distribution of the travel time T, t the average 
travel time E(T) and σ the standard deviation of T. H is a functional depending 
only on the tail of the standardised travel time distribution and the parameter 
ratio α/β. An important conclusion is that the reduced-form utility function can 
always be written as a linear combination of the mean travel time and the 
standard deviation of travel time. Another important conclusion is that the 
parameter in front of the standard deviation will depend on the standardised 
travel time distribution. Standard deviation valuations that have been obtained 
in one context can thus not be directly transferred to another context with a 
different standardised travel time distribution.  
 
Hence, as long as the traveller can choose departure time freely, the mean-
variance approach is well motivated for theoretical reasons. It also seems to 
be the most common approach in studies of non-scheduled trips – car trips 
and urban (high-frequency) transit trips. Examples of mean-variance studies 
are abundant, e.g. Jackson and Jucker (1982), Black and Towriss (1993), 
Senna (1994) and Eliasson (2004). A good survey of results from both mean-
variance and expected delay studies can be found in Vincent (2008). Mean-
variance studies are often compared with each other using the reliability ratio, 
the ratio between the standard deviation parameter and the travel time 
parameter, i.e. (α+ω)/βH in formula (2). Typical reliability ratios are in the 
range 0.5 – 1.3 (see Hollander, 2005b).  

2.3 Expected delay models 
For low-frequency scheduled trips, however, the expected delay approach 
seems to be most common. Examples of such studies are abundant, e.g. 
Hensher and Prioni (2002), Algers et al. (1995), Rietveld et al. (2001), Kroes 
and Kouwenhoven (2005), Eliasson (2004) and Kroes et al. (2007). Wardman 
(2001) presents a meta-analysis of British valuations of expected delay 
(among other things). A good survey of both mean-variance and expected 
delay studies can be found in Vincent (2008). It also appears to be a fairly 
common practice to use the expected delay as a quality parameter used for 
empirical quality evaluations; for example, the Swedish Rail Administration 
uses expected delay together with the share of trains “on time” as their main 
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punctuality indicators, as does the UK train companies (Batley et al., 2007). 
However, as we will show below, one needs to make further rather restrictive 
assumption for the approach to be valid.  
 
Usually, expected delay studies present the distribution of delays to the 
respondent in the form “there is a risk p that the train is delayed L minutes”, 
occasionally using several delay length Li and corresponding risk levels pi. 
Denoting the scheduled travel time by To and the random delay by ∆, the 
utility function is then assumed to be on the form (assuming the more general 
although unusual form with several risks pi and lengths Li)  
 

u* = (α+ω)T0 + (β+ω)E(∆) = (α+ω)T0 + (β+ω)ΣipiLi   (3.) 
 
Expected delay studies are often compared with each other using the 
reliability multiplier (a term introduced (?) by Batley et al, 2007), defined as the 
ratio between the expected delay parameter and the travel time parameter, 
i.e. (α+ω)/β in formula (3).  
 
The theoretical and empirical foundations of the expected delay approach, 
however, are fairly weak. Note that the value of a delay of length L and risk p 
is supposed to be linear in both L and p. Both assumptions are contestable on 
theoretical grounds, and testable empirically. Empirical investigations are 
presented in section 4. Before the empirical investigations, let us consider 
how we would expect the valuation of a delay L with risk p should depend on 
L and p. Assume that we can write this valuation as 
 

u = (α+ω)T0 + (β+ω)g(p)f(L)  (4.) 
 
Then, the question is what the functions g() and f() look like. The expected 
delay approach assumes that both g() and f() are linear.  
 
As long as the departure time is fixed, the expected value of the delay is 
obviously linear in the delay risk p (assuming the underlying model above is 
correct). But if travellers have at least some possibility to adjust their 
departure time, even if the frequency is low, then this will not hold. The easiest 
way to show what happens is to assume that departure time may be chosen 
freely, and to use the simplistic but frequently used assumption that delays 
occur with frequency p and length L. The utility function (1) can then be written 
as  
 

u = (α+ω)T0 + (β+ω)pL (5.) 
 
It is easy to see that if (α+ω) < (β+ω)p, then the traveller should choose a 
departure time T0+L minutes before the preferred arrival time. This will 
guarantee that she arrives at or before the preferred time, incurring a 
generalised travel (α+ω)(T0+L). If instead (α+ω) > (β+ω)p, then the traveller 
should choose a departure time T0 minutes before the preferred arrival time. 
This will mean that she will suffer delays of length L with frequency p, 
incurring a expected generalised travel of (α+ω)T0 + (β+ω)pL. This means that 
travellers will choose either of two extremes: they either depart early enough 
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that they are always in time, or they depart so they will be on time if there is 
no delay.  
 
But naturally, all travellers are not equal. Some will be have a high valuation of 
late arrival (large β), and some a low valuation. It is easy to show that this 
means that the “reliability multiplier”, the ratio between the travel time 
parameter and the expected-delay parameter, will be decreasing in p. In other 
words, the reliability multiplier should be higher for small delay risks. 
Intuitively, this is because the higher the delay risk is, the more passengers 
will have sufficient margins so a delay will not make them arrive after their 
preferred arrival time (and hence suffer a lateness penalty). For very high 
delay risks, the reliability multiplier will simply tend to the value of travel time 
α+ω. Hence, we would expect that g() increases slower than linearly in p, 
 
Turning to f(L), a natural conjecture would be that f(L) would increase faster 
than linearly in L. The reason would be that since the timetable constrains the 
choice of departure time, most passengers will have a margin between the 
train’s scheduled arrival time and their actual preferred arrival time, after 
which a delay penalty is incurred. This would mean that the longer the delay, 
the more passengers will arrive after their preferred arrival time. In our 
notation, this would mean that for small L, when most passengers have  a 
margin larger than L, the delay valuation will be close to ω (the direct utility of 
travel time), while for large L, when most passengers have a margin less than 
L, the delay valuation will be close to ω+β.  
 
But there are also possible reasons why the valuation might increase slower 
than linearly in L. For example, one can hypothesize that for some travellers, 
once an appointment or a connection has been missed, being even later does 
not increase the disutility much – the damage is already done. Hence, the 
behaviour of f() is ambiguous: if the delay penalty is (at least) linear, we would 
expect f() to increase faster than linearly in L (since more and more people will 
be delayed more than their margin), whereas f() might increase slower than 
linearly if the delay penalty increases slower than linearly. 

3 THE DATA 
Our data material consists of three data sets from two surveys – one survey 
contained two different stated choice games, with different question types. All 
studies described the risk for late arrival as (some variation of) “x out y trains 
are z minutes late; the rest are on time”. That is, rather than illustrating a 
smooth distribution with e.g. a sample of travel times, delays were presented 
as “with probability p, there is a delay of length L”.  
 
The first survey was conducted in May 2004 on trains between Stockholm and 
Gothenburg. Respondents answered 8 pairwise choices, where the variables 
were travel time, travel cost, delay risk and delay length. Below is an example 
of a pairwise choice.  
 
 Choose one! Departure 1 Departure 2  
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 Fare 20 SEK more than today As today  

 Delays 1 out of 10 trains are 20 
minutes late, the rest are on 

time 

3 out of 10 trains are 10 
minutes late, the rest are on 

time 

 

 Travel time The scheduled travel time is 
2 hours 30 minutes 

The scheduled travel time is 
2 hours 45 minutes 

 

     
 I prefer:  1  2  
 
The second survey was conducted in May 2007 on the train between 
Stockholm and Norrköping (many of these trains then continue to 
Gothenburg). This survey contained two stated choice exercises. In the first, 
respondents answered 8 pairwise choices, where the variables were travel 
cost, delay length at a given delay risk (always the same risk in both 
alternatives), whether passengers received information about the length of a 
delay if there was one, and whether passengers received compensation 
(coffee or a ticket voucher) if there was a delay. Below is an example of a 
pairwise choice. 
 
 Choose one! Departure 1 Departure 2  
     

 Fare As today 70 SEK more than today  

 Delay length Once every two weeks, 
there is a 40 minutes delay

Once every two weeks, 
there is a 10 minutes delay 

 

 Compensation None Coffee  

 Information: Should there be a delay, 
you get information about 
delay length and possible 

connections. 

Should there be a delay, 
you get information about 
delay length and possible 

connections. 

 

     
 I prefer:  1  2  
 
Note that the delay risk was always the same in both alternatives, although 
the risk was different in different pairwise choices. The pilot studies had 
indicated that questions that included both delay risks and lengths (and the 
other variables) were too complicated for respondents, so it was decided that 
delay risk should not enter the pairwise choice explicitly (although the delay 
risk will of course affect the trade-off between delay, cost and 
compensation/information). In the 2004 study, using different risk levels in a 
pairwise choice seemed to have worked, though, but then there were fewer 
other variables. A closer study of the 2004 study also reveals that the random 
distribution of the parameters is much larger than in the 2007 study, which 
could depend on the questions being more difficult.  
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In the second exercise, a novel question type was used, called Most Preferred 
Improvement (MPI) (see Levander, 2007). The respondent is faced with a 
number of potential improvements of her trip, and is asked which one she 
would prefer. The presented improvements related to the fare, travel time, 
delay length, delay risk, information and compensation. All improvements are 
relative to a (partly hypothetical) “current situation” with the actual fare, delays 
on average once a week and 30 minutes long, and no compensation or 
information should a delay occur. Below is an example of an MPI choice. 
 
 Which of these improvements would you prefer?   

  30 SEK lower fare  

  The train is delayed on average once every two weeks 
instead of once every week 

 

  If a delay occurs, it is on average 15 minutes instead of 30 
minutes 

 

  You get information about the delay length and 
connections, should a delay occur.  

 

 
The table below summarises facts about the three data sets. 
 
Abbreviation PC04 PC07 MPI07 
Date May 2004 May 2007 May 2007 
Type Pairwise choice Pairwise choice Most preferred 

improvement 
No. of 
respondents 
(valid choices) 

402 (2920) 2270 (15471) 2270 (7720) 

 - commuters 52 (367) 539 (2839) 539 (1438)
 - other private 172 (1221) 801 (5316) 801 (2615)
 - business 178 (1332) 930 (7316) 930 (3667)
Average fare 562 SEK 449 SEK 449 SEK 
Variable ranges    
 - delay risk p 5%, 15% 10%, 2.5% 20%, 10%, 5% 
 - delay length L 5-55 min. 5-40 min. (at 10% 

risk), 20-115 min. 
(at 2.5% risk) 

15-30 min. 

 - fare -55 to +130 SEK 
compared to 
current fare 

+10 to +150 SEK 
compared to 
current fare 

-15 to -40 SEK 
compared to 
current fare 

 - travel time 2:30 – 3:30 n/a n/a 
 - information 
about delay 
length and 
connections 

n/a Yes/no Yes/no 

 - compensation n/a Ticket voucher, 
coffee, none 

Ticket voucher, 
coffee, none 
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4 ESTIMATION RESULTS 
In the estimations, we will explore how a delay of length L and probability p is 
valued. We will concentrate on three questions: 
 
- How does the value of the delay depend on delay length L? 
- How does the value of the delay depend on delay probability p? 
- How is the value of the delay affected by allowing for randomly distributed 

parameters? 
 
We will use the principal functional form 
 

u = αt + (γ1+γ2Y)c + βpf(L)  (6.) 
 
t is the scheduled travel time, c the fare, Y is income and βp a parameter that 
is different for different values of p and f(L) some function of delay length L. 
One purpose of the study is to test the “expected lateness approach”, i.e. the 
assumption that f(L) is linear in L and that the βp:s will vary as βp =β*p. The 
expression βpf(L)/λ can be thought of as the value of a possible delay 
whereas the expression βpf(L)/(λp) is usually called the value of [expected] 
delay time.  
 
The standard deviation approach is seldom (if ever) used when delays are 
described as “delays have probability p and length L”, but it can nevertheless 
be illuminating to note that the standard deviation approach would imply that 
f(L) is a linear function and that the βp:s should vary as βp =β√p(1-p) ≈β√p 
for small2 p.  
 
For each model structure, nine separate models are estimated, corresponding 
to the three data sets divided into three trip purposes (commuting, other 
private and business).  

4.1 Is the value proportional to the delay length? 
To explore the dependence on the delay value of delay length, we use two 
different methods. First, we estimate a polynomial of order two: 
 

u = αt + (γ1+γ2Y)c + βpL + θpL2
 (7.) 

 
If θp is significantly different from zero, then obviously the delay value is not 
linear in L, and the sign of θp will reveal whether it increases slower or faster 
than linearly. Note that we estimate different θp:s for different risk levels p. 
 
Second, we estimate a Box-Cox function: 
 

u = αt + (γ1+γ2Y)c + βp(Lλp-1)/λp (8.) 
 

                                            
2 For example, for p = 0.15 (which would be high delay risk), the error of this approximation is 
8%. For p = 0.05, a more typical risk, the error is 3%.  
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Similarly, the size of λp (less or greater than 1) will reveal whether f(L) is linear 
or not. Note that we estimate different λp:s for different risk levels p.  
 
Full estimation results are given in appendix. The table below summarises the 
results, focusing on whether f(L) is approximately linear or not. The 
shorthands “θp ≈ 0” and “λp ≈ 1” mean that the parameters were not significantly 
different from zero and one, respectively, at the 95% level. “n/a” means that 
the model was not possible to estimate.  
 
It should be noted that the models discussed in the table below do not include 
any treatment of the ‘repeated measures’ property of SP data (there are no 
individual level error components). Now, experience suggests that this usually 
lead to an overstatement of the significance of the parameters, which should 
be borne in mind when interpreting the results. “n/a” means that the model did 
not give meaningful results, for example because of insignificant delay 
parameters.  
 
Data 
set 

Trip purpose Box-Cox:  
λp ≠ 1? 

Quadr. pol.: θp ≠ 0? 

PC04 All n/a for p = 5% 
λp = 0.4 for p = 15% 

θp ≈ 0 for p = 5% 
θp > 0 for p = 15% 

 Commuting n/a θp ≈ 0 for p = 5% 
θp > 0 for p = 15% 

 Other private n/a θp ≈ 0 for p = 5% 
θp > 0 for p = 15% 

 Business n/a θp ≈ 0 for p = 5% 
θp > 0 for p = 15% 

PC07 Commuting λp ≈ 1  θp ≈ 0 
 Other private λp ≈ 1  θp ≈ 0 
 Business λp = 0.5 for p = 2.5% 

λp ≈ 1 for p = 10% 
θp > 0 for p = 2.5%  
θp ≈ 0 for p = 10% 

MPI07 Commuting n/a θp > 0 for p = 20% 
 Other private n/a θp > 0 for p = 20% 
 Business n/a θp ≈ 0 for p = 20% 
 
First we note that the conclusions of the Box-Cox models and the polynomial 
models coincide. To summarise the results, the hypothesis that the delay 
value is proportional to delay length often holds: In about half of the cases, the 
linearity hypothesis cannot be rejected. But when the linearity hypothesis is 
rejected (in about half of the cases), it is always the case that the delay value 
increases slower than linearly in L. Contrary to what might have been 
expected, the delay value never increases faster than linearly in L. The 
slower-than-linear behaviour mostly occurs at high risk levels ( (p≥15%), while 
for low risk levels (p≤10%), the linearity hypothesis can seldom be rejected. 
The difference from the linearity assumption at the high risk levels is 
considerable: the λ parameter is around 0.5, meaning that the delay value 
increases only proportional to the square root of the delay length. 
 
This result is rather non-intuitive, since we would expect that the longer the 
delays are, fewer travellers would have a sufficient safety margin, which imply 
that disutility increase with delay length. However, one hypothesis that might 
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explain that the delay value increases slower than delay length is that some 
respondents have a low acceptance for high risk levels irrespective of delay 
time, but higher acceptance for lower risk levels. If this is the case the non-
linearity found would be captured by a dummy penalty for the higher risk level: 
 

u = αt + (γ1+γ2Y)c + βpL + θδ (9.) 
 
where δ is 1 if the risk level is 0.15 and 0 otherwise. Only the data set PC04 
can be used to investigate this explanation, since delay risk did not vary within 
the pairwise choices in the PC07 survey.  
 
Estimating this model formulation we make two observations. First, the log 
likelihood value increases compared to the quadratic-polynomial model for all 
three model segments. Second, only the parameters βp changes significantly 
compared to the linear model and the quadratic-polynomial model. So it 
appears as though the last explanation is valid and that there are at least 
some travellers that have a low acceptance for high risk levels even for short 
delays.  
 

4.2 Is the delay value proportional to the risk level? 
Next, we turn to the question of how the value of a possible delay with 
probability p and length L depends on the risk level p. To do this, we estimate 
nine separate models (three data sets divided into three trip purposes) using 
the following functional form: 
 

u = αt + (γ1+γ2Y)c + βpL (10.) 
 
Hence, we estimate separate βp:s for different risk levels. Note that the 
conventional “value of [expected] delay time” would correspond to βp/p.  
 
These models were estimated as random-parameters logit models, assuming 
that βp and γ1 are normally distributed (other distributions were tested with 
disappointing results).  The ‘repeated measures’ property was accounted for 
by assuming that the random parameters (which can also be interpreted as 
error components) are individual specific. Valuations were evaluated at the 
estimated means. For the PC07 and MPI07 data sets, this did not change the 
results, but for the PC04 data set, this turned out to be important: model fit 
improved very much, and the valuations (which had been high compared to 
the other studies when using standard multinomial logit) became more in line 
with the other data sets, and also with what we would have expected from 
other studies. The main result below – the elasticities of delay values with 
respect to risk levels – do not change if standard multinomial logit is used, 
though.  
 
The diagram and table below show the value of a possible delay of one hour 
for different risk levels (in SEK). Complete estimation results can be found in 
the appendix. 
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Risk Commuting Other private Business Source 
2.5% 58 95 198 PC07 
5% 40 50 111 MPI07 
5% 64 35 103 PC04 
10% 97 103 241 PC07 
10% 63 75 142 MPI07 
15% 155 58 209 PC04 
20% 124 126 270 MPI07 
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To reveal how the delay value depends on the risk level, it is illuminating to 
compute the arc elasticity of the delay value with respect to the risk level for 
each study, i.e.  
 

VoD ∝ pε ⇒ ε = ln(VoD1/VoD2)/ln(p1/p2)  (11.) 
 
where VoDi is the value of a possible delay with risk pi. The PC07 and PC04 
contained two risk levels each, and hence give one elasticity each. The MPI07 
data set contains three risk levels, and hence give two elasticities. The table 
below shows the results. 
 
Average risk level 

(p1+p2)/2 
Commuting Other private Business Source 

6.25% 0.4 0.1 0.1 PC07 
7.5% 0.7 0.6 0.3 MPI07 
10% 0.8 0.5 0.6 PC04 
15% 1.0 0.7 0.9 MPI07 

 
A zero elasticity means that the value of a possible delay is completely 
independent of the risk level. This might be plausible if the traveller feels 
compelled to always have a sufficient margin to compensate for a delay, no 
matter how small the risk is. The “expected lateness” assumption implies an 
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elasticity of 1: the value of a possible delay is proportional to the risk level. 
Finally, assuming that the value of a possible delay is proportional to the 
standard deviation implies an elasticity of 0.5 (for small risks).  
 
From the table, we make the following observations: 
1. All elasticities are less or equal to 1, and almost all are strictly less than 1. 

Hence, the value of a possible delay increases slower than linearly in p – 
in particular for small risks. Conversely, halving a small risk will not nearly 
decrease the delay value by half, but with much less.   

2. The smaller the risk, the smaller the elasticity; for very small risks, the 
elasticities for non-commuting trips are almost zero, meaning that the 
value of a possible delay is almost independent of the risk level.   

3. The elasticities for commuting trips are consistently higher than for the 
other trip purposes. One could hypothesize that the need to always have 
sufficient margins, even at very small risks, is higher for non-commuting 
trips. This interpretation is supported in focus groups reported in Kroes et 
al (2007), who note that “unexpected train delays were often accepted as 
a valid excuse for arriving late at their work, so part of the disbenefit of 
being late could be transferred to the employer”.  

 
The main message here is that the expected lateness approach is clearly not 
valid for small risk levels (10% or below). For higher risk levels (15% and 
above), it might be  reasonable approximation. Recall that typical punctualities 
for train services lie in the range 85-95%. Hence, using the expected lateness 
approach seems like a bad idea.  
 
As a corollary, this means that the concepts of “the value of delay time” and 
“the reliability multiplier” have to be used with great caution, since these will 
depend on the risk level. In principle, these values can be computed and used 
at a fixed, given risk level – but they cannot be transferred to a context with 
another risk level.  

5 CONCLUSIONS 
The purpose of this paper is to investigate how passengers on long-distance 
trains value unexpected delays relative to scheduled travel time and travel 
cost. In particular, we study how the valuation of a possible delay with 
probability p and length L depends on p and L.  
 
The main result is that this valuation is not proportional to the expected delay, 
but increases slower than linear in the delay probability. This is particularly 
pronounced for small risks.  
 
This means that estimated “values of delay time” will depend on the delay risk  
level p; “delay time values” will be higher the lower the risk levels in the study 
are. This means that estimated values of delay times which do not take the 
non-linearity in delay risk into account will result in valuations that cannot be 
transferred between contexts with different delay risks.  
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Train operators commonly use “average delay per train” as a quality measure. 
The findings here indicate that this may not be an optimal measure, if the 
purpose is to improve the overall attractiveness of the train service.  
 
Regarding the dependence on delay length L, the valuation increases slower 
than linearly in L in about half of the cases, whereas in the remaining cases,  
the linearity hypothesis (the valuation is proportional to delay length) cannot 
be rejected. Contrary to what be expected, the valuation never increases 
faster than linearly in delay length.  
 
Accounting for random population heterogeneity turns out be important. In 
particular, the valuation of delays is shown to have a much larger variation 
across the population than the valuation of travel time or travel cost. 
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